VUU TRUNG HƠC CHUYÊN NGHIẸP - DAY NGHÊ

SÁCH DU̇NG CHO CÁC TRUỜNG ĐȦO TAOO HẸ TRUNG HỌC CHUYÊN NGHIẸP

PGS. TS. ĐẶNG VĂN ĐÀO (chủ biên) - PGS. TS. LÊ VĂN DOANH

GIÁO TRÌNH

KỸ THUẬT ĐIỆN

Sách dùng cho các truờng đào tạo hệ THCN
(Tái bản lân thứ hai)

Lời giơoi thiệu

Việc tổ chức biên soạn và xuất bản một số giáo trình phuc vụ cho đào tạo các chuyên ngành Điện - Điện tử, Ca khí - Động lực ở các trường THCN - DN là một sư cớgắng lớn của Vu Trung học chuyên nghiệp - Dạy nghề và Nhà xuất bản Giáo duc nhả̀m tüng bước thớng nhất nội dung dạy và học ở các trường THCN trên toàn quốc.

Nội dung của giơo trīnh đã̃ được xây dựng trên cơ sỏ kế thừa những nọi dung được giảng dạy ả̉ các trường, kết hợp với nhü̃ng nội dung mới nhằm đáp û́ng yêu cầu nâng cao chất lượng đào tạo phuc vụ sư nghiệp công nghiệp hóa, hiện đại hóa. Đề cương của giáo trinh đä được Vụ Trung học chuyên nghiệp - Dạy nghề tham khảo y kiến của một sô trường nhu': Trường Cao đẳng Công nghiệp Hà Nội, Trường TH Việt - Hung, Truờng TH Công nghiệp II, Trường TH Công nghiệp III u.v... và đă nhận được nhiều ý kiến thiết thực, giúp cho tác giả biên soạn phü hфp hon.

Giáo trình do các nhà gióo có nhiều kinh nghiệm giảng dạy ả̉ các trường Đại học, Cao đả̉ng, THCN biên soạn: Giáo trình dược biên soạn ngắn gọn, dễ hiểu, bổ sung nhiều kiến thửc mới và biên soạn theo quan điểm mở, nghĩa là, đề cập nhü̈ng nọi dung cơ bản, cốt yếu để tùy theo tính chất của các ngành nghề đào tạo mà nhà trương tự điếu chỉnh cho thich hợp và không trái vá̛ quy định của chương trình khung đào tạo THCN.

Tuy các tác giả đăa có nhiều cố gắng khi biên soạn, nhing giáo trinh chắc không tránh khỏi nhừng khiếm khuyết. Vụ Trung học chuyên nghiệp Dạy nghể đề nghị các trương sử dụng nhüng giáo trinh xuất bản lần này để bổ sung cho nguồn giâo trinh dang rất thiếu hiện nay, nhằm phuc vu cho việc dạy. và học của các trường đạt chất lự̛ng cao hơn. Giáo trình này cüng rất bổ ich đốl với đọi ngũ kỹ thuật viên, công nhân ky thuật đểnâng cao kiến thức và tay nghề cho minh.

Hy vọng nhận được sư góp y của các trương và bạn đọc để những giáo trình đưực biên soạn tiếp hoặc lần tái bản sau có chất lượng tốt hơn. Mọi góp y xin gửi về NXB Giáo dục - 81 Trần Hưng Đạo -Hà Nọi.

Mở đầu

Giáo trình KY̌ THUẤT ĐIÊ̂N được biên soạn theo đè̀ cương do vụ THCN - DN, Bô Giáo dục \& Đào tạo xây dựng và thông qua. Nôi dung được biên soạn theo tinh thần ngắn gọn, dễ hiểu. Các kiến thực trong toàn bộ giáo trinh có mối liên hệ lógíc chặt chē. Tuy vậy, giáo trình cūng chỉ là một phần trong nội dung của chuyên ngành đào tạo cho nên người dạy, người học cẩn tham khảo thêm các giáo trình có liên quan dốíi vá̛i ngành học để̉ việc sủ̉ dụng giáo trinh có hiệu quả hon.

Khi biên soạn giáo trình, chủng tôi đā cón gắng cập nhật nhũng kiến thûc mới có liên quan đến môn học và phù hợp với đối tương sủ̉ dụng cūng nhu cố gắng gắn nhüng nội dung lí thuyết với những vấn đề thực tế thường gặp trong sản xuất, đời sống để giáo trinh có tinh thự tiền cao.

Nội dung của giáo trinh được biên soạn với dung lượng 60 tiết, gồm 8 chương :
Chương 1. Mạch điện một chiều ; Chương 2. Điện từ; Chương 3. Dòng điện xoay chiều hình sin ; Chương 4. Mạch điện ba pha; Chươg 5. Chỉnh lưu và ổn áp ; Chương 6. Các thiết bị đóng cắt và bảo vệ mạ̣ch điện ; Chương 7. Chiếu sáng; Chương 8. Tính toán mạng điện.

Trong quá trinh sử dưng, tù̀y theo yêu cầu cư thể có thể điều chỉnh số tiết trong mổi chương. Trong giáo trình, chüng tôi không đề ra nội dung thưc tộp của tǜng chuơng vi trang thiết bi phuc vu cho thục tập của các trường không đồng nhất. Vi vậy, căn cứ vào trang thiết bị đã có của từng trường và khả năng tổ chức cho học sinh thực tộp d̉ các xí nghiệp bên ngoài mà trường xây dựng thời lương và nợi dung thực tộp cụ thể - Thời lự̛̣g thực tộp tốt thiểu nói chung cūng không it hơn thời lương học lì thuyết của mỗi môn.

Giáo trinh được biên sộn cho đối tự̛̣ng là học sinh THCN, Công nhân lành nghề bậc $3 / 7$ và nó cûng là tài liệu tham khảo bổ ich cho sịnh viên Cao đả̉ng kỹ thuật cūng nhu Kÿ thuật viên đang làm việc ở căc cơ sở kinh tế nhiều lĩnh vự khác nhau.

Mặc dù đâ cố gắng nhựng chắc chắn không tránh khỏi hết khiếm khuyết. Rất mong nhận được ý kiến đơng góp của người sủ̉ dung đểlẩn tái bản sau được hoàn chỉnh hơn. Mọi góp ý xin đực gử về Nhà XBGD -81 Trần Hựg Đq̣o, Hà Nội.

TÁC GIẢ

Churong I

MẠCH ĐIệN MộT CHIỀU

1.1. NHỮNG KHÁI NIẸM CƠ BẢN VỀ MẠCH ĐIỆN MỘT CHIÊU

Dòng điẹn một chiề̀u có trị sơ và chiều không đởi theo thời gian.

1. Nguổn điện một chiếu

Các loại nguồn điẹn một chiều :

a. Pin, acquy

Biến đơi hoá năng thành điện năng (hình 1.1).

Diện áp giữa 2 điện cực của một phần tử (pin, acquy) không lớn, vì thé để cơ điẹn áp lớn, ta nới tiếp các phần tử với nhau (hình 1.2a), để có də̀ng điện lớn, ta nơi song song các phần tử với nhau (hình 1.2 b).

Hinh 1.1. Nguờn điẹn hoá học

b)

Hinh 1.2. Nơi cac pin, acquy

b. Pin măt trời

Pin mặt trời làm việc dựa vào hiệu ứng quang diện, biến đổi trực tiểp quang năng thành điện năng.

Dưới tác dụng của ánh sáng, hình thành sự phân bó điện tích khác dấu ở lớp tiếp xúc giữa 2 chất bán dān khác nhau sẽ tạo ra điẹn áp giữa 2 cực (hình 1.3).

c. May phát điện mọt chiều

Máy phát điện biến đới cơ năng đưa vào trục của máy thành điện năng lấy ra ở các cực của dây quấn (hình 1.4).

d. Bộ nguôn điện tử công suât

Bộ nguồn diện tử cồng suất không tạo ra diện năng mà chỉ biến đởi điện áp xoay chiều (lăy từ lươi điện) thành điện áp một chiều lấy ra ở 2 cực (hình 1.5).

Hinh 1.3. Cấu tạo pin mặt trời

Hinh 1.4. Hình dáng của một máy phát điện

Hinh 1.5. Bọ nguỡn biên đỡi điẹn áp xoay chiều thành mợt chiều

2. Phụ tải

Phụ tải (tải) là các thiết bị điện tiêu thụ điện năng để biến đổi thành các dạng năng lượng khác như cơ năng (đọnng cơ điện), nhiệt nảng (bàn là điện, bếp điện), quang năng (đèn điện)..v.v..

3. Mạch điện

Mạch điẹn là tập hợp các thiết bị điện (nguờn, tải, dây dān) nới với nhau trong đó dòng điện có thể chạy qua (hình 1.6).

Mạch điện phức tạp có nhiều nhánh, nhiều mạch vòng và nhiều nút.
Nhánh. Nhánh là bộ phận của mạch điện gồm có các phần tử nối tiếp nhau trong đó có cùng dòng điẹn chạy qua.

Nút. Nút là chỗ gặp nhau của các nhánh (từ 3 nhánh trở lên).

Mach vòng. Mạch vòng là lối đi khép kín qua các nhánh.

Hình 1.6. Nuít và vờng của mạch điện.

Máy phát (MF) cung cấp điẹn cho đèn (Ð) và động cơ điện (DC) gồm có 3 nhánh ($1,2,3$), 2 nút (A, B) và 3 mạch vòng (a, b, c).

1.2. CÁC ĐẠI LƯỢG ĐẠC TRUNG QUÁ TRİNH NĂNG LƯƠNG TRONG MACH DIỆN

1. Dòng điện

Dòng điện i có trị so bằng tớc đọ biến thiên của điện lượng Q qua tiết diện ngang của vậ dẳn.

$$
\begin{equation*}
\mathrm{i}=\frac{\mathrm{dQ}}{\mathrm{dt}} \tag{1-1}
\end{equation*}
$$

đơn vị là ampe, A.
Người ta quy ước chiều của dòng điện chạy trong vật dẩn ngược với chiều chuyển động của điện tử (hình 1.7).

2. Điện áp.

Tại mōi điểm trong mạch điện có một điện thế φ. Hiệu điện thế giữa hai điểm gọi là điện áp U, đơn vị là von, V.

Điện áp giữa 2 diểm A và B (hình 1.8) là :

$$
\begin{equation*}
\mathrm{U}_{\mathrm{AB}}=\varphi_{\mathrm{A}}-\varphi_{\mathrm{B}} \tag{1-2}
\end{equation*}
$$

Hinh 1.8

Chiều điện áp quy ước là chiếu từ điểm có điện thế cao đến điểm có điện thế thấp.

Điện áp giữa 2 cực của nguờn điện khi hở mạch ngoài (dòng điện $\mathrm{I}=0$) được gọi là sức điện động E .

3. Công suất

Công suất của nguồn sức điện động là :

$$
\begin{equation*}
\mathrm{P}=\mathrm{EI} \tag{1-3}
\end{equation*}
$$

Công suất của mạch ngoài là :

$$
\begin{equation*}
\mathrm{P}=\mathrm{UI} \tag{1-4}
\end{equation*}
$$

Đơn vị của công suất là oát, W.

1.3. MÔ HÌNH MẠCH ĐIỆN MỘT CHIÊU

Khi tính toán, mạch điẹn thực được thay thé bằng mọt sơ đồ gọi là mô hình mạch điện, trong đó các phần tử thực được thay thé bằng các phần tử lý tưởng $\mathrm{E}, \mathrm{J}, \mathrm{R}$

1. Sức điện động \mathbf{E}

Sức điện động E là phần tử lý tưởng, có trị số bằng điện áp U đo được giữa 2 cực của nguồn khi hở mạch ngoài. Chièu của sức điện động quy ước từ điện thé thấp đến điện thế cao (cực âm tới cực dương) (hình 1.9).

Chiều của điện áp quy ước từ điẹn thế cao đến điện thé thấp, do đó nếu chiều vẽ như hình 1.9 thì:

$$
\begin{equation*}
\mathrm{U}=\mathrm{E} \tag{1-5}
\end{equation*}
$$

2. Nguồn dòng điện J

Nguồn dòng điện J là phần tử lý tưởng có trị só bầng
Hinh 1.9. Ký hiẹu nguôn sức điện dộng dòng điện ngắn mạch giữa 2 cực của nguỗn (hình 1.10).

3. Điện trở R

Điện trở R đặc trưng cho một vật dẫn về mặt cản trở dòng điện chạy qua. Vê hiện tượng năng lượng, điẹn trở \mathbf{R} đạ̣c trưng cho tiêu tán, biến đởi điện năng tiêu thụ thành các dạng năng lượng khác như nhiệt nảng, quang nāng...v.v.. (hình 1.11).

Công suất của điện trở

$$
\begin{equation*}
\mathrm{P}=\mathrm{RI}^{2} \tag{1-6}
\end{equation*}
$$

Hinh 1.10. Ký hiẹu nguốn dòng

Hinh 1.II
Ký hiẹ̣u diện trở

4. Thiết lập mố hình mạch điện

a. Nguơn diện

So đồ thay thé của nguồn điẹn gồm sức điện động E nới tiếp với điện trở trong R_{n} (hình 1.12).

Khi giải mạch điện cơ các phàn tử tranzito, nhiều khi nguồn điện có sơ đồ thay thế là nguốn dòng điện $J=\frac{E}{R_{n}}$ mấc song song với điện trở R_{n} (hình 1.13).

Hinh 1.12. So đó thay thế nguồn E

Hinh 1.13. So dó thay thể bằng nguờn dòng

b. So ato thay thé tải

- Các tải như động cơ điện một chiều, acquy ở chế độ nạp điện được thay thé bằng so đơ gờm sức điện động E nơi tiếp với điẹn trở trong R_{n} (hình 1.14), trong đó chiêu E ngược với chiều I .
- Các tải như bàn là điện, bếp điẹn,

Hinh 1.14

Hinh 1.15 bơng đèn..v.v.. được thay thế bằng điẹn trở R của chúng (hình 1.15).

Ví dụ 1: Một nguồn điện mọt chiều có sức điện đọng $\mathrm{E}=100 \mathrm{~V}$, diẹn trở trong $\mathrm{R}_{\mathrm{n}}=1 \Omega$ cung cáp điẹn cho tài c6 $\mathrm{R}_{1}=24 \Omega$.

Thiết lập mo hình mạch điẹn và tính dòng điện tài I_{1}.

Lời giải : Mo hình mạch điẹn theo E vẽ trên hình 1.16 .

Dòng điẹn tải I_{1} :

$$
I_{1}=\frac{E}{R_{0}+R_{1}}=\frac{100}{1+24}=4 \mathrm{~A}
$$

Hinh 1.16
Co thé giải bài toán theo mô hình nguón dòng điẹn nhut sau:

Mo hình mạch điện theo nguón dòng điẹn :

$$
J=\frac{E}{R_{n}}=\frac{100}{l}=100 \mathrm{~A}
$$

vễ trên hình 1.17.
Dòng điẹn tải : $\mathrm{I}_{\mathrm{t}}=100 \cdot \frac{1}{(\mathrm{I}+24)}=4 \mathrm{~A}$

Hinh 1.17

1.4. CÁC ĐỊNH LUẬT CỦA MẠCH ĐIỆN

Các định luật của mạch điẹn đã học ở vạt lý, ở đây nhấn mạnh áp dụng và thực hành và vận dụng các biểu thức vào tính toán mạch điẹn.

1. Định Iuạt Óm

a. Nhanh thuàn điện trở R

Xét nhánh thuần điẹn trở (hình 1.18)
Biểu thức tính điện áp trên điện trở :

$$
\begin{equation*}
\mathrm{U}=\mathrm{RI} \tag{1-7}
\end{equation*}
$$

Biểu thức tính dòng điện qua điện trở:

U - tính bằng V
I - tính bằng A

Hinh 1.19

R - tính bằng Ω
Vf dụ 2 : Trong mạch điện hình 1.19 , biêt $I=210 \mathrm{~mA} ; R=100 \Omega$. Tính điẹn áp trên điẹn trở U .

Là̀ giài :

Diệnáp trên điện trờ:

$$
\mathrm{U}=\mathrm{RI}=100 \cdot 0,21=21 \mathrm{~V}
$$

b. Nhanh có sức diẹn aọng

E và aiện trở R
Xét nhánh có E, R (hình 1.20)
Biểu thức tính điện áp U :

$$
\begin{aligned}
\mathrm{U} & =\mathrm{U}_{1}+\mathrm{U}_{2}+\mathrm{U}_{3}+\mathrm{U}_{4} \\
& =\mathrm{R}_{1} \mathrm{I}-\mathrm{E}_{1}+\mathrm{R}_{2} \mathrm{I}+\mathrm{E}_{2} \\
& =\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \mathrm{I}-\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right)
\end{aligned}
$$

Hinh 1.20

Vạy:

$$
\begin{equation*}
U=(\Sigma R) I-\Sigma E \tag{1-9}
\end{equation*}
$$

Trong biểu thức (1-9), quy ước dấu như sau:
Sức điện động E và dòng điện I có chiều trùng với chiều điện áp U sẽ lấy dấu dương, ngược lại sẽ lấy dấu âm.

Biểu thức tính dòng điện :

$$
\begin{equation*}
\mathrm{I}=\frac{\mathrm{U}+\Sigma \mathrm{E}}{\Sigma \mathrm{R}} \tag{1-10}
\end{equation*}
$$

Trong biểu thức (1-10) quy ước dấu như sau:
Sức điện động E và điện áp U có chiều trùng với chiều dòng điện sẽ lấy dấu dương, ngược lại sẽ lấy dấu âm.

Ví dụ 3 : Cho mạch điẹn hình 1.21.
Biét $\mathrm{E}_{1}=100 \mathrm{~V} ; \mathrm{I}_{1}=5 \mathrm{~A}$
Tính điẹn áp $U_{A B}$ và dòng diẹn các nhánh $\mathrm{I}_{2}, \mathrm{I}_{3}$.

Lời giài:

Tính diẹn áp U_{AB} :

$$
\begin{aligned}
U_{A B} & =E_{1}-R_{1} I_{1} \\
& =100-2.5=90 \mathrm{~V}
\end{aligned}
$$

Hinh 1.21

Dòng điện I_{2} :

$$
\mathrm{I}_{2}=\frac{\mathrm{U}_{\mathrm{AB}}}{\mathrm{R}_{2}}=\frac{90}{3}=30 \mathrm{~A}
$$

Dòng điẹn \mathbf{I}_{3} :

$$
I_{3}=\frac{U_{A B}-E_{3}}{R_{3}}=\frac{90-115}{1}=-25 \mathrm{~A}
$$

Dòng điẹn $\mathrm{I}_{3}<0$, chiều thực của dòng điện I_{3} ngược vơi chiểu đã vê trên hình 1.21.

2. Định luật Kiêcshôp

a. Định luạt Kiêcshôp I

Định luật này cho ta quan hệ giữa các dòng điện tại một nút, được phát biểu như sau :

Tớng đại số nhũ̃ng dòng điện ở một nút bäng không.

Trong đó quy ước dòng điện đi tới nút lắy dấu dương, dòng điẹn rời khỏi nút lấy dấu âm (hình 1.22).

$$
\begin{equation*}
\Sigma \mathrm{I}_{\mathrm{nit}}=0 \tag{1-11}
\end{equation*}
$$

Ở hình 1.22 thì :
Hinh 1.22. Dòng diện nút
$\mathrm{I}_{1}+\left(-\mathrm{I}_{2}\right)+\left(-\mathrm{I}_{3}\right)=0$

b. Định luật Kiécshóp 2

Định luật này cho ta quan hệ giữa sức điện đợng, dòng điện và điện trở trong một mạch vòng khép kín, được phát biểu như sau :

Đi theo mợt mạch vòng khép kín theo mọt chiều tuỳ ý chọn, tông đái só nhüng sức diện dộng bảng tởng dài số các điện áp rơi trên các điện trở cuaa mach vòng.

$$
\begin{equation*}
\Sigma \mathrm{RI}=\Sigma \mathrm{E} \tag{1-12}
\end{equation*}
$$

Quy ước dấu : các sức điện động, dờng điện có chiều trùng chiều mạch vòng lấy dấu dương, ngược lại lấy dáu âm.

Ơ mạch vòng hình 1.23 :

Hinh 1.23. Mạch vòng dòng điện

$$
\mathbf{R}_{1} \mathbf{I}_{1}-R_{\mathbf{2}} \mathbf{I}_{2}+\mathrm{R}_{3} \mathbf{I}_{3}=E_{1}+E_{2}-E_{3}
$$

Ví dụ 4 : Tính đòng điện I_{3} và các sức điện đọ̣ng E_{1}, E_{3} trong mạch điện hình 1.24. Cho biết $\mathrm{I}_{2}=10 \mathrm{~A} ; \mathrm{I}_{1}=4 \mathrm{~A} ; \mathrm{R}_{1}=1 \Omega ; \mathrm{R}_{2}=2 \Omega, \mathrm{R}_{3}=5 \Omega$.

Lài giải :

Áp dụng định luạt Kiếcshớp 1 tại nút A.

$$
\begin{gathered}
-I_{1}+I_{2}-I_{3}=0 \\
I_{3}=I_{2}-I_{1}=10-4=6 \mathrm{~A}
\end{gathered}
$$

Áp dụng dịnh luật Kiécshóp 2 cho mạch vòng a :

$$
\begin{aligned}
E_{1} & =R_{1} I_{1}+R_{2} I_{2} \\
& =1.4+2.10=24 \mathrm{~V}
\end{aligned}
$$

Hinh 1.24. Mạch điện cho ví dụ 4
mạch vòng b :

$$
\mathrm{E}_{3}=\mathrm{R}_{3} \mathrm{I}_{3}+\mathrm{R}_{2} \mathrm{I}_{2}=5.6+2 \cdot 10=50 \mathrm{~V}
$$

1.5. CÁC BIẾN ĐỞI TƯƠNG ĐƯƠNG

Biên đới tương đương nhằm mục đích đưa mạch điẹn phức tạp về dạng đơn giản hơn. Khi biến đổi tương đương, dòng điện, điện áp tại các bộ phận không bị biến đổi vẫn giữ nguyên. Dươi đây đưa ra một só biễn đởi tương đương thường gạap.

1. Các điện trở mấc nối tiếp

Điện trở tương đương $R_{t 4}$ của các điện trở R_{1}, R_{2}, R_{n} mắc nối tiếp (hình 1.25) là:

$$
\begin{equation*}
R_{t d}=R_{1}+R_{2}+\ldots R_{n} \tag{1-13}
\end{equation*}
$$

2. Các điện trở mắc song song

Điện trở tương đương R_{td} của các điện trở $R_{1}, R_{2} \ldots R_{n}$ mắc song song (hình 1.26) tính như sau :

$$
\begin{equation*}
\frac{1}{R_{t d}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots . \frac{1}{R_{n}} \tag{1-14}
\end{equation*}
$$

Khi chỉ có 2 điện trở R_{1}, R_{2} mắc song song điện trở tương đương của chúng.

$$
\begin{equation*}
R_{t a}=\frac{R_{1} \cdot R_{2}}{R_{1}+R_{2}} \tag{1-15}
\end{equation*}
$$

Ví dụ 5 : Tính dòng điện I trong mạch điện hình 1.27.

Lò̀ giải:

Trước hếr tính điẹn tở tương đương R_{23} của 2 điẹn trợ R_{2} và $\mathrm{R}_{3} \mathrm{n}$ бi song song.

$$
R_{23}=\frac{R_{2} \cdot R_{3}}{R_{2}+R_{3}}=\frac{18.2}{18+2}=1,8 \Omega
$$

Sau khí tính được R_{23} ta c 6 mạch thay thê đơn giản hơn (hình 1.27 b).
Các điện trở R_{1}, R_{23}, R_{4} mắc nôí tiếp, điện trở tương đương $R_{a n}$ của mạch.
Dòng điện I là:

$$
R_{\mathrm{ab}}=\mathrm{R}_{1}+\mathrm{R}_{23}+\mathrm{R}_{4}=2,2+1,8+6=10 \Omega
$$

$$
\mathrm{I}=\frac{\mathrm{E}}{\mathrm{R}_{ \pm}}=\frac{110}{10}=11 \mathrm{~A}
$$

a)

b)

Hinh 1.27

3. Biến đổi sao (Y) thành tam giác (Δ) và ngược lại

a. Biến dổi sao thành tam giác $Y \rightarrow \Delta$

Giả thiết có 3 diện trở $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ nới hình sao. Biến đói hình sao thành các điện trở đấu tam giác (hình 1.28).

Công thức tính các điện trở nơì hình tam giác là:

Khi hình sao đơi xứng:

$$
\begin{aligned}
& R_{1}=R_{2}=R_{3}=R \text { thì ta co: } \\
& R_{12}=R_{23}=R_{31}=3 R
\end{aligned}
$$

Hinh 1.28. Bién đởi $Y \rightarrow \Delta$

b. Biến aó̉i tam giác thành sao $\Delta \rightarrow Y$

Già thiết có 3 điện trờ $\mathrm{R}_{12}, \mathrm{R}_{23}$, R_{31} nới hình tam giác. Bién đởi hình tam giác thành hình sao (hình 1.29), điẹn trở các cạnh hình sao tính là :

$$
\left.\begin{array}{l}
R_{1}=\frac{R_{12} \cdot R_{31}}{R_{12}+R_{23}+R_{31}} \\
R_{2}=\frac{R_{23} \cdot R_{12}}{R_{12}+R_{23}+R_{31}} \tag{1-17}\\
R_{3}=\frac{R_{31} \cdot R_{23}}{R_{12}+R_{23}+R_{31}}
\end{array}\right\}
$$

Hinh 1.29. Biến đởi $\Delta \rightarrow Y$

Khi hình tam giác đб夭i xứng $R_{12}=R_{23}=R_{31}=R$, thì $R_{1}=R_{2}=R_{3}=\frac{R}{3}$
Ví dụ 6 :
Tînh dòng điện I chạy qua nguồn của mạch cấu hình 1.30 , biêt $R_{1}=12 \Omega, R_{3}=$ $\mathrm{R}_{2}=6 \Omega, \mathrm{R}_{4}=21 \Omega, \mathrm{R}_{0}=18 \Omega, \mathrm{E}=240 \mathrm{~V}, \mathrm{R}_{\mathrm{n}}=2 \Omega$ (hinh 1.30).

Lời giài :

Biên đởi tam giác $\mathrm{ABC}\left(\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{0}\right)$ thành sao $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{C}}$ (hình 1.31).
$R_{A}=\frac{R_{1} R_{2}}{R_{1}+R_{2}+R_{0}}=\frac{12.6}{12+6+18}=2 \Omega$
$R_{B}=\frac{R_{1} \cdot R_{0}}{R_{1}+R_{2}+R_{0}}=\frac{12.18}{12+18+6}=6 \Omega$

$\mathrm{R}_{\mathrm{c}}=\frac{\mathrm{R}_{0} \cdot \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{0}}=\frac{18.6}{12+18+6}=3 \Omega$
Hinh I.30. Mạch điẹn cho ví dụ 6

Diện trở tương đương R_{OD} cùa 2 nhánh song song:

$$
\begin{aligned}
R_{\mathrm{OD}} & =\frac{\left(\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{3}\right) \cdot\left(\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{4}\right)}{\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{3}+\mathrm{R}_{\mathrm{c}}+\mathrm{R}_{4}} \\
& =\frac{(6+6) \cdot(3+21)}{6+6+3+21}=8 \Omega
\end{aligned}
$$

Điện trở tương dương toàn mạch
$\mathrm{R}_{\mathrm{td}}=\mathrm{R}_{\mathrm{n}}+\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{oD}}=2+2+8=12 \Omega$
Dòng điẹn chạy qua nguôn

$$
\mathrm{I}=\frac{\mathrm{E}}{\mathrm{R}_{\mathrm{t}}}=\frac{240}{12}=20 \mathrm{~A}
$$

Hinh 1.31

4. Định ly Thevenin

Một mang điện 2 cực phức tạp có nguốn có thể được thay thé bằng mợ mạch điện 2 cực đơn giản gờm̀ sức điện động $\mathrm{E}_{\mathrm{lh}} \mathrm{n}$ бi tiép với điẹn $\mathrm{trở} \mathrm{R}_{\mathrm{th}}$ (hình 1.32), trong đó E_{th} bằng điện áp giữa 2 cực $U_{A B}$ khi hở mach ngoài, $\mathrm{R}_{\text {th }}$ là điện trở

Hinh 1.32. Mạch tương dương của mañg 2 cực có nguơn giữa 2 cực A và B của mạng 2 cực khi các sức điện động của mạng bằng không.

Vídụ 7. Hāy ứnh E_{b} và R_{t} (sơ đờ Thevenin) cùa mạng 2 cực hì̀nh 1:33.

Là̉ giài :

$$
E_{\omega}=U_{A B}=\frac{E}{R_{1}+R_{2}} R_{2}=\frac{20}{2+8} 8=16 \mathrm{~V} ; R_{u}=R_{A B}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{2.8}{2+8}=1,6 \Omega
$$

Sơ đó Thevenin vê trên hình 1.34.
Nếu mạng 2 cụ̣c nơi với mọt tải có điẹn trờ $R_{1}=30,4 \Omega$, dòng điẹn tải I_{1} sẽ là:

$$
I_{t}=\frac{E_{t u}}{R_{t a}+R_{1}}=\frac{16}{1,6+30,4}=0,5 \mathrm{~A}
$$

Hinh 1.33
Mạch điện cho ví dụ 7

Hinh 1.34
Sơ đö Thevenin

5. Định lý Noctông

Một mạng điện 2 cực phức tạp có nguồn có thể được thay thé bằng mạch điẹn đơn giản gồm nguồn dòng điẹn J_{N} nơi song song với điện trở R_{lh} (hình 1.35), trong đó J_{N} bằng dòng điện ngấn mạch giữa 2 cực A

Hinh 1.35. So đó thay the mạng 2 cưc co nguôn và $B, R_{\text {th }}$ là điệ̣n trở giữa 2

Ví dy 8: Hảy th thé ne

Lời giài:

$$
\begin{aligned}
& \mathrm{J}=\mathrm{I}_{\mathrm{ng} \text { fin mach } A B}=\frac{\mathrm{E}}{\mathrm{R}_{1}}=\frac{20}{2}=10 \mathrm{~A} \\
& \mathrm{R}_{\mathrm{th}}=\frac{\mathrm{R}_{1} R_{2}}{R_{1}+R_{2}}=\frac{2.8}{2+8}=1,6 \Omega
\end{aligned}
$$

Sơ đó Noctông vẽ trên hình 1.36 .
Nếu mạng nơi với tải co $\mathrm{R}_{\mathrm{t}}=30,4 \Omega$, dòng điẹn tài se là :

$$
I_{t}=\frac{J_{N} \cdot R_{t h}}{R_{t h}+R_{t}}=\frac{10.1,6}{1,6+30,4}=0,5 \mathrm{~A}
$$

Hinh 1.36. So đó Noctong

1.6. NGUYEN LÝ XÉP CHÔNG

Đay là tính chất cơ bản của mạch điện tuyén tính.
Trong mạch điện tuyến tính nhiều nguoồn, đòng điện qua mơi nhánh bằng tởng đại só các dòng điẹn qua nhânh do tác dụng riêng rẽ của từng sức điện
động (lúc đó các sức điện động khác coi bằng không). Nguyên lý xếp chồng được ưng dụng nhiều để nghiên cứu mạch điẹn có nhiều nguỗn tác dụng:

Tính bằng phương pháp xếp chồng, thực hiện theo các bước sau:
Bước 1 : Thiết lập sơ đồ điện chỉ có một nguồn tác động.
Bước 2 : Tính dòng điện và điện áp trong mạch chỉ có một nguồn tác đọng.

Bước 3 : Thiết lập sơ đồ mạch điện cho nguồn tiếp theo, lạ̣p lại các bước 1 và 2 cho môi nguồn tâc động.

Bước 4 : Xếp chồng (cộng đại sơ) các kết quả tính dòng điện, điện áp của môi nhánh do các nguồn tác dụng riêng rẽ.

Ví dụ 9 : Hãy tính dòng điện I_{2} trong nhánh 2 của mạch điện hình 1.37a.

Lời giài :

Ta sê thực hiện theo các bước:
Buớc I: Lạp sơ đờ chi có mợt sức điẹn đọng E_{1} tác dụng (hình 1.37b)
Buớc 2 : Giải sơ đô hình 1.37 b chì có nguờn E_{1} tác đọng

$$
R_{10}=R_{1}+\frac{R_{2} \cdot R_{3}}{R_{2}+R_{3}}=2+\frac{4.4}{4+4}=4 \Omega
$$

Dòng điẹn nhánh 1 do nguồn E_{1} tác đọng :

$$
I_{I I}=\frac{E_{l}}{R_{t d}}=\frac{40}{4}=10 \mathrm{~A}
$$

Dòng điẹn nhánh 2 do nguồn E_{1} tác đọng:

$$
I_{21}=\frac{I_{1!} \cdot R_{3}}{R_{2}+R_{3}}=\frac{10.4}{4+4}=5 \mathrm{~A}
$$

Bıớc 3 : Thiét lạ̣p so đớ chỉ có một mình sức điện động E_{3} tác đọng (hình 1.37c).

Giải sơ đồ hình 1.37 c ta c : :

$$
R_{t d}=R_{3}+\frac{R_{2} \cdot R_{1}}{R_{2}+R_{1}}=4+\frac{4.2}{4+2}=\frac{16}{3} \Omega
$$

Dòng điện nhánh 3 do nguờn E_{3} tác đọng :

$$
I_{33}=\frac{E_{3}}{R_{t d}}=\frac{16}{16 / 3}=3 \mathrm{~A}
$$

Dòng điện nhánh 2 do nguờn E_{3} tác dộng :

$$
I_{23}=\frac{I_{33} \cdot R_{1}}{R_{1}+R_{2}}=3 \cdot \frac{2}{2+4}=1 \mathrm{~A}
$$

Buờc 4 : Xếp chờng kết quả.
Dơng điện nhánh 2 do cả 2 nguớn tác đọng à à:

$$
\mathrm{I}_{2}=\mathrm{I}_{21}+\mathrm{I}_{23}=5+\mathrm{I}=6 \mathrm{~A}
$$

1.7. CÁC PHƯONG PHÁP GIẢI MẠCH ĐIỆN PHƯCC TẠP

Giải mạch điẹn là tính dòng điẹn, điện áp, công suất của các nhánh, các phẩn tử. Dòng điện trong các nhánh còn chưa biết, vì thế ta tuỳ y chọn chiều dòng điẹn (gọi là chiều dương) trong các nhánh. Kết quả tính toán, nếu dòng điện dươong $\mathrm{I}>0$, chiếu (thực) đòng điện trong nhánh trùng với chiều dương đã chọn. Nếu $\mathrm{I}<0$ chiểu dòng điện ngược với chiều đã chọn.

Chúng ta xét 3 phương pháp cơ bản dưới đây :

1. Phương pháp dòng điện nhánh

Ẩn sớ của hẹ phương trình là dòng điện các nhánh.
Phương pháp này ứng dụng trực tiếp 2 định luật Kiêcshop 1 và 2, và thực hiẹn theo các bước sau:

Bước 1: Xác định só nút $\mathrm{n}=\ldots$. , sớ nhánh $\mathrm{m}=$ Só ẩn của hệ phương trình bằng sớ nhánh m.

Bước 2: Tuỳ ý vẽ chiều dòng điện mởi nhánh.
Bước 3 :Viết phương trình Kiêcshôp 1 cho ($\mathrm{n}-1$) nút đã chọn.
Bước 4 : Viết phương trình Kiécshop 2 cho $(m-(n-1))=(m-n+1)$ mạch vòng dọc lạp.

Bước 5 : Giải hệ thống m phương trình đã thiết lập, ta có dòng điện các nhánh.

Vf dụ10: Áp dụng phương pháp dòng diẹn nhánh, tính döng điẹn trong các nhánh của mạch điẹn hình 1.38.

Lò̀i giải :

Bước 1: Mạch diẹn co 2 nút A và B , so nút $\mathrm{n}=2$; mạch co 3 nhánh $1,2,3$, s 6 nhánh $\mathrm{m}=3$.

Bước 2: Vẽ chiều đơng điện các nhánh $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ như hình 1.38 .
Bước 3: S δ nút cân viết phương trình Kiêcshôp 1 là $\mathrm{n}-1=2-1=1$. Chọn nút A . Phương trình Kiecshép 1 viêt cho nút \mathbf{A} là:

$$
\begin{equation*}
\mathrm{I}_{1}-\mathrm{I}_{2}+\mathrm{I}_{3}=0 \tag{1}
\end{equation*}
$$

Bước 4: Chọn $(\mathrm{m}-\mathrm{n}+1)=3-2+1=2$ mạch vòng.
Chọn 2 mạch vòng độc lạp a, b như hình vẽ. Viết phương trình Kiêcshôp 2 cho mạch vòng a và b.

Phương trình Kiécshôp 2 cho mạch vòng a.

$$
\begin{equation*}
47 I_{1}+22 I_{2}=10 \tag{2}
\end{equation*}
$$

Mach vòng b

$$
\begin{equation*}
22 \mathrm{I}_{2}+68 \mathrm{I}_{3}=5 \tag{3}
\end{equation*}
$$

Bước S: Giải hệ 3 phương trình ta có dòng điẹn các nhánh

$$
\begin{aligned}
& \mathrm{I}_{1}=138 \mathrm{~mA} \\
& \mathrm{I}_{2}=160 \mathrm{~mA} \\
& \mathrm{I}_{3}=22 \mathrm{~mA}
\end{aligned}
$$

Phương pháp dòng điện nhánh giải trực tiếp dược các dòng điện các nhánh, song $s \sigma$ phương trình bằng s σ nhánh m , tương đơi lớn, đòi hỏi nhiếu thời gian tính toán giải hẹ phương trình.

Vì thê dưới đây đưa ra các phương pháp sư dụng các ẩn só trung gian là dòng diện mạch vòng, điẹn thễ nút, do đó só phương trình sẽ được giảm bót, nhờ vậy tiét kiệm thời gian tính toán.

2. Phương pháp dòng điện mạch vòng

Ở phương pháp này, ản số trong hệ phương trình không phả̉ là dòng điện các nhánh, mà là mọt dỏng điện mạch vòng mang ý nghĩa về toán học, vì néu biết được chúng, có thể đê dàng tính dòng điện các nhánh.

Các bước giải theo phương pháp dòng điện mạch vòng như sau :
Bước 1: Xác định ($\mathrm{m}-\mathrm{n}+1$) mạch vòng độc lập và tuỳ ý vẽ chiểu dòng điẹn mạch vòng, thơng thường nên chọn chiễu các dòng điẹn mạch vòng giơng nhau, thuận tiện cho lập hẹ phương trình.

Bước 2 : Viết phương trình Kiêcshốp 2 cho mōi mạch vòng theo các dòng điện mạch vòng đã chọn.

Bước 3 : Giải hệ phương trình vừa thiết lập, ta có dòng điện mạch vòng.
Bước 4 : Tính dòng điện các nhánh theo dòng điẹn mạch vòng như sau: dòng điện mõ̃i nhánh bằng tởng đại số dòng điện mạch vòng chạy qua nhánh ấy.

Ví dụ11 : Åp dưng phương pháp dòng điện mạch vòng giải mạch điẹn hình 1.39.

Lời giải :

Buớc 1: So mạch vòng dọc lập:

$$
m-n+1=3-2+1=2
$$ mach vong.

Vẽ chiếu dòng điện mạch vòng I_{a}, I_{b} như hình vẽ.

Hình 1.39. Mạch điện áp dụng phương pháp đòng điện mạch vòng

Bước 2 : Viết phương trình Kiécshop 2 cho các mạch vòng.
Mạch vòng a

$$
\begin{gather*}
(47+22) I_{a}-22 I_{b}=10 \\
69 I_{a}-22 I_{b}=10 \tag{1}
\end{gather*}
$$

Mạch vòng b

$$
\begin{align*}
-22 \mathrm{I}_{\mathrm{a}}+(22+82) \mathrm{I}_{\mathrm{b}} & =-5 \\
-22 \mathrm{I}_{\mathrm{a}}+104 \mathrm{I}_{\mathrm{b}} & =-5 \tag{2}
\end{align*}
$$

Buớc 3 : Giải hệ phương trình dã thiết lạ̣p

$$
\left\{\begin{array}{cc}
69 \mathrm{I}_{\mathrm{a}}-22 \mathrm{I}_{\mathrm{b}} & =10 \\
-22 \mathrm{I}_{\mathrm{a}}+104 \mathrm{I}_{\mathrm{b}} & =-5
\end{array}\right.
$$

Sử dụng phương pháp ma trạn

$$
\begin{aligned}
& I_{a}=\left|\begin{array}{cc}
10 & -22 \\
-5 & 104
\end{array}\right| \\
& \left.\begin{array}{cc}
69 & -22 \\
-22 & 104
\end{array} \right\rvert\, \\
& =\frac{(10) \cdot(104)-(-5) \cdot(-22)}{(69) \cdot 104-(-22) \cdot(-22)}=0,139 \mathrm{~A} \\
& \left.I_{b}=\left|\begin{array}{cc}
69 & 10 \\
-22 & -5
\end{array}\right|=\frac{(69) \cdot(-5)-(-22) \cdot(10)}{\mid 69} \begin{array}{|c}
-22 \\
-22 \\
104
\end{array} \right\rvert\,
\end{aligned}=-0,0187 \mathrm{~A} .
$$

Bước 4 : Tf́nh dòng điện nhánh

$$
\begin{array}{ll}
I_{1}=I_{a} & =139 \mathrm{~mA} \\
I_{2}=I_{a}-I_{b}=139-(-18,7) & =158 \mathrm{~mA} \\
I_{3}=I_{b} & =-18,7 \mathrm{~mA}
\end{array}
$$

Dòng điện $\mathrm{I}_{3}<0$, do đo I_{3} c 6 chiều ngược lậi với chiếu đã vẽ.

3. Phương pháp điện thé nút

Phương pháp này sử dụng ấn số trung gian lả điện thê các nút để thiết lập hệ phương trình.

Biết điện thế các nưt, ta đễ dàng tính dòng điện các nhánh.
Xét mạch điện hình 1.40 .

Hinh 1.40. Mạch điẹn đề tính diẹn thếnuút
Tuỳ ý chọn trước điẹn thế mợt điểm coi là biết trước. Thường lây diện thế điểm áy bà̀ng không.

Ở đay chọn điện thế điểm C bằng khong : $\varphi_{\mathrm{C}}=0$.
Dựa vào định luạt Ôm ta có dông điẹn các nhánh

$$
\begin{array}{lll}
I_{1}=\frac{E_{1}-\varphi_{A}}{R_{1}} & ; & I_{4}=\frac{\varphi_{B}}{R_{4}} \\
I_{2}=\frac{\varphi_{A}}{R_{2}} & I_{5}=\frac{E_{5}+\varphi_{B}}{R_{5}} \\
I_{3}=\frac{\varphi_{A}-\varphi_{B}}{R_{3}} &
\end{array}
$$

Định luật Kiecshốp 1 tại nút \mathbf{A}

$$
I_{1}-I_{2}-I_{3}=0
$$

$$
\begin{array}{r}
\frac{E_{1}-\varphi_{A}}{R_{1}}-\frac{\varphi_{A}}{R_{2}}-\frac{\varphi_{A}-\varphi_{B}}{R_{3}}=0 \\
\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right) \varphi_{A}-\left(\frac{1}{R_{3}}\right) \varphi_{B}=\left(\frac{1}{R_{1}}\right) \cdot E_{1}
\end{array}
$$

Định luạt Kiécshóp I tại điềm B

$$
\begin{aligned}
& \mathrm{I}_{3}-\mathrm{I}_{4}-\mathrm{I}_{5}=0 \\
& \frac{\varphi_{A}-\varphi_{\mathrm{B}}}{\mathrm{R}_{3}}-\frac{\varphi_{\mathrm{B}}}{\mathrm{R}_{4}}-\frac{\mathrm{E}_{5}+\varphi_{\mathrm{B}}}{\mathrm{R}_{5}}=0 \\
& \left(-\frac{1}{\mathrm{R}_{3}}\right) \cdot \varphi_{\mathrm{A}}+\left(\frac{1}{\mathrm{R}_{3}}+\frac{1}{\mathrm{R}_{4}}+\frac{1}{\mathrm{R}_{5}}\right) \cdot \varphi_{\mathrm{B}}=-\left(\frac{1}{\mathrm{R}_{5}}\right) \cdot \mathrm{E}_{5}
\end{aligned}
$$

Gọi: $\mathrm{G}_{\mathrm{A}}=\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}\right)$ - Tởng dã̃n của các nhánh nơi vơi nút A .

$$
\begin{array}{ll}
\mathrm{G}_{\mathrm{B}}=\left(\frac{1}{\mathrm{R}_{3}}+\frac{1}{\mathrm{R}_{4}}+\frac{1}{\mathrm{R}_{5}}\right) & - \text { Tơng dả̃n của các nhánh nđ̛i với nút } B . \\
\mathrm{G}_{\mathrm{AB}}=\left(\frac{1}{\mathrm{R}_{3}}\right) & - \text { Tơng dā̃n chung giữa } 2 \text { nút } A \text { và } B .
\end{array}
$$

$$
\mathrm{G}_{1}=\frac{1}{\mathrm{R}_{1}} \quad \text { - Điện dā̃n nhánh } 1 .
$$

$$
G_{5}=\frac{1}{R_{5}} \quad \text { - Điện dẫn nhánh } 5
$$

Hệ phương trình điẹn thế nút sẽ là

$$
\begin{aligned}
& G_{A} \varphi_{A}-G_{A B} \varphi_{\mathrm{B}}=\mathrm{G}_{1} \mathrm{E}_{1} \\
& -\mathrm{G}_{\mathrm{AB}} \varphi_{\mathrm{A}}+\mathrm{G}_{\mathrm{B}} \varphi_{\mathrm{B}}=-\mathrm{G}_{5} \mathrm{E}_{5}
\end{aligned}
$$

Giải hệ phương trình ta sẽ có điẹn thế các nút, và từ đó tính được dòng điện các nhánh.

Các bước đẻ giải mạch điện theo phương pháp điện thế nút là:
Bước 1: Xác định số nút n.
Bước 2: Chọn một nưt bất kỳ có điện thé biết trước.
Bước 3: Tính tởng dẫn của các nhánh nới với mōi nút $G_{A}, G_{B} \ldots$ và tởng dẫn chung của các nhánh giữa 2 nút $G_{A B} \ldots$ và điện dẵn các nhánh có nguồn $\mathrm{G}_{\mathbf{i}}, \mathrm{G}_{5}$.

Bước 4 : Lạp hệ phương trình điện thế nút.
Bước 5 : Giải hệ phương trình ta có điện thế của mōi nút.
Bước 6 : Sử dụng định luạt Ôm tính dòng điện các nhánh.
Ví dụ 12 : Giải mạch điẹn ở hình 1.40

$$
\begin{aligned}
& G_{A}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)=\left(\frac{1}{470}+\frac{1}{680}+\frac{1}{330}\right)=0,00663 \\
& G_{B}=\left(\frac{1}{R_{3}}+\frac{1}{R_{4}}+\frac{1}{R_{5}}\right)=\left(\frac{1}{330}+\frac{1}{1000}+\frac{1}{100}\right)=0,01403 \\
& G_{A B}=\left(\frac{1}{R_{3}}\right)=\frac{1}{300}=0,00303 \\
& G_{1}=\frac{1}{R_{1}}=\frac{1}{470} \\
& G_{5}=\frac{1}{R_{5}}=\frac{1}{100}
\end{aligned}
$$

Hẹ phương trình điẹn thé nứt

$$
\begin{aligned}
& 0,00663 \varphi_{A}-0,00303 \varphi_{B}=\frac{4,5}{470} \\
& -0,00303 \varphi_{A}+0,01403 \varphi_{B}=\frac{-7}{100}
\end{aligned}
$$

Giải hẹ phương trình ta có:

$$
\varphi_{A}=-0,928 \mathrm{~V} \quad ; \quad \varphi_{B}=-5,19 \mathrm{~V}
$$

Từ đó túnh được dòng điẹn các nhánh

$$
\begin{aligned}
& I_{1}=\frac{E_{1}-\varphi_{A}}{R_{1}}=\frac{4,5+0,928}{470}=0,01155 \mathrm{~A} \\
& I_{2}=\frac{\varphi_{A}}{R_{2}}=\frac{-0,928}{680}=-0,00136 \mathrm{~A} \\
& I_{3}=\frac{\varphi_{A}-\varphi_{B}}{R_{2}}=\frac{-0,928+5,19}{330}=0,01291 \mathrm{~A} \\
& I_{4}=\frac{\varphi_{B}}{R_{4}}=\frac{-5,19}{1000}=-0,00519 \mathrm{~A} \\
& I_{5}=\frac{E_{5}+\varphi_{B}}{R_{5}}=\frac{7-5,19}{100}=0,0181 \mathrm{~A}
\end{aligned}
$$

Phương pnáp điẹn thê nút được sử dụng khi mạch điện có nhiều nhánh ít nt Đạ̣c biệt khi mạch chỉ cớ 2 nút (hình 1.41), ta dẽ dàng tính điện thế của nút.

Chọn $\varphi_{\mathbf{B}}=0$, vậy chỉ còn điện thế nút A là ẩn s ó

$$
\begin{aligned}
& G_{A} \varphi_{A}=G_{1} E_{1}+G_{3} E_{3} \\
& G_{A}=\frac{1}{47}+\frac{1}{22}+\frac{1}{82}=0,07892 \\
& G_{1}=\left(\frac{1}{R_{1}}\right)=\frac{1}{47} \\
& G_{3}=\left(\frac{1}{R_{3}}\right)=\frac{1}{82} \\
& G_{1} E_{1}+G_{3} E_{3}=0,27374
\end{aligned}
$$

Hinh 1.41. Mạch điện co 2 nút

Vạy phương trình điện thér nút A Ià

$$
0,07892 \varphi_{\mathrm{A}}=0,27374
$$

Giài ra ta có:

$$
\varphi_{\wedge}=3,468 \mathrm{~V}
$$

Dòng điện các nhánh

$$
\begin{aligned}
& I_{1}=\frac{E_{1}-\varphi_{A}}{R_{1}}=\frac{10-3,468}{47}=0,139 \mathrm{~A} \\
& I_{2}=\frac{\varphi_{A}}{R_{2}}=\frac{3,468}{22}=0,158 \mathrm{~A} \\
& I_{3}=\frac{E_{3}-\varphi_{A}}{R_{3}}=\frac{5-3,468}{82}=0,0187 \mathrm{~A}
\end{aligned}
$$

CÂU HỎ́ ƠN TẬP VÀ BÀl TẬ̣

1.1. Nguồn điện là gì ? Tải là gì ? Hảy cho các ví dụ về nguồn điện và tải.
1.2. Phàt biễu định luật Ôm.
1.3. Phát biẻ̛u định luật Kiêcshôp.
1.4. Các bước giải mạch điện bầng phương pháp dòng điện nhạ́nh.
1.5. Các bước giải mạch điên bằng phương pháp điện thế các điểm nút.
1.6. Cho $E=100 \mathrm{~V} ; R=10 \Omega ; 1=5 A$. Tînh điện áp U trong 2 so đổ hinh $B 1.6 a$ và

Hinh B1.6
Đáp só :
a) $U_{A B}=150 \mathrm{~V}$
b) $U_{B A}=50 \mathrm{~V}$
1.7. Cho $E=50 \mathrm{~V} ; R=5 \Omega ; U=40 \mathrm{~V}$. Tính dòng điện 1 trong 2 so đờ hình $B 1.7 a$ và $B 1.7 b$.

a)

b)

Hinh B1. 7
Đáp sớ:
a) $I=18 \mathrm{~A}$
b) $I=2 A$.
1.8. Một tải có điộn trở $R=19 \Omega$ đấu vào nguồn điện một chiều có $E=100 \mathrm{~V}$, điện trở trong $R_{t r}=1 \Omega$. Tính dơng điện I, điện áp U và công suất P của tải.

Đáp sठ́: $I=5 A ; U=95 \mathrm{~V} ; P=475 \mathrm{~W}$
1.9. Cho một nguỡn điện một chiều cón sức điện động $E=50 \mathrm{~V}$; điện trở trong $R_{\text {tr }}=0,1 \Omega$. Nguôn điện cung cấp điện cho tảai có điện trở R. Biết công suất tỡn hao trong nguô̂n điện là 10 W . Tính dòng điện I , điện áp U giữa 2 cực của nguồn điiẹn, điện trở R và công suất P tải tiêu thụ.

Đáp só: $I=10 \mathrm{~A} ; U=49 \mathrm{~V} ; R=4,9 \Omega ; P=490 \mathrm{~W}$.
1.10. Một nguỗn điện có sức điện đợng E và điện trở trong $R_{t r}=0,5 \Omega$, cung cấp điện cho tải có điện trở R. Biết điện áp của tải $U=95 \mathrm{~V}$; công suất tải tiêu thụ $P=950 \mathrm{~W}$. Tinh E, R.

$$
\text { Đáp só : } E=100 \mathrm{~V} ; R=9,5 \Omega \text {. }
$$

1.11. Bốn điện trở $R_{1}, R_{2}, R_{3}, R_{4}$ mắc nới tiếp đẩu vào nguồn điện áp U 12 V (điệ̣n trở trong bằng khơng). Dòng điện trong mạch $\mid=25 \mathrm{~mA}$, điện trên các điện trờ R_{1}, R_{2}, R_{3} là $2,5 \mathrm{~V} ; 3 \mathrm{~V} ; 4,5 \mathrm{~V}$.

Vẽ so đồ cách đấu dây, cách mắc ampe kế, vôn kể để đo các đạ̣ lượn trên. Tính điện áp U_{4} trên điện trở R_{4}. Tính điện trở $R_{1}, R_{2}, R_{3}, R_{4}$.

Dáp só: $\quad U_{4}=2 \mathrm{~V} ; R_{1}=100 \Omega ; R_{2}=120 \Omega$

$$
R_{3}=180 \Omega ; R_{4}=80 \Omega
$$

1.12. Biết sớ chỉ của mợt số ampe kế trên hinh
B1.12. Xác địh só chỉ của ampe ké A_{1} và A_{2}.

Đáp số:

$$
\begin{aligned}
& I_{A T}=3,5 A ; \\
& I_{A 2}=2,5 A
\end{aligned}
$$

Hinh 81.12
1.13. Để co điện trở (tương đương) 150Ω, người ta đấu song song ha điện trở $R_{1}=330 \Omega$ và R_{2}.

Tinh $\mathrm{R}_{\mathbf{2}}$
Đáp só: $R_{2}=275 \Omega$.
ở mach. Hai điện trở $R_{1}=100 \Omega$ và $R_{2}=47 \Omega$ đấu song song, biết đòng điện mạch chínih $I=100 \mathrm{~mA}$. Tính dòng điện qua các điện trở R_{1}, R_{2}.

Đáp só: $I_{1}=32 \mathrm{~mA} ; I_{2}=68 \mathrm{~mA}$
1.15. Dùng phép biốn đời tương đương, tính dòng điện trong các nhánh trên so đô hình B1.15. Tính công suất nguồn và công suắt trên các điệ̣n trỏ.Cho $U=80 \mathrm{~V}$; $\mathrm{R}=$ $1,25 \Omega ; R_{1}=6 \Omega ; R_{2}=10 \Omega$.

Đáp só:

$I_{1}=10 \mathrm{~A} ; I_{2}=6 \mathrm{~A} ; I=16 \mathrm{~A}$;
$P=U I=1280 \mathrm{~W} ; P_{R}=320 \mathrm{~W} ;$

Hinh B1. 15

$$
P_{R 1}=600 \mathrm{~W} ; P_{R 2}=360 \mathrm{~W}
$$

Ta tháy $P=P_{R}+P_{R 1}+P_{R 2}$
1.16. Tính dòng điện I và công suắt nguớn trong so đô hình B1.16. Cho $U=120 \mathrm{~V}$; $R_{1}=R_{2}=R_{3}=2 \Omega ; R_{4}=R_{5}=$ $\mathrm{R}_{6}=6 \Omega$.

Đap só:
$1=60 \mathrm{~A} ; \mathrm{P}=7,2 \mathrm{~kW}$
1.17. Cho mạch điện trên

Hinh B1.16 so đổ hình B1.17. Hảy giải mạch điện trên bằng 2 phương pháp sau:
a) Phương pháp dòng điện nhánh.
b) Phương pháp điện thế các nút (chọn điểm nút B có điện thé bầng không).

Cho $E_{1}=200 \mathrm{~V} ; R_{1}=2 \Omega ; E_{2}=170 \mathrm{~V} ; R_{2}=10 \Omega ; R_{3}=20 \Omega$.

Hinh B1.17

Đáp sớ: Chọn chiếu dòng aiện nhánh như hinh B1.17.
a) $I_{1}=10 \mathrm{~A} ; I_{3}=9 \mathrm{~A} ; \mathrm{I}_{2}=-1 \mathrm{~A}$ (chiều dòng diọ̆ I_{2} (nhánh 2) ngược với chiớu dáa va).
b) Lạp phương trinh điện thế nứt A, glâi ra $\varphi_{A}=180 \mathrm{~V}$; Từ đo co $U_{A B}=\varphi_{A}-\varphi_{B}=180-0=180 \mathrm{~V}$. Ap dung dịh luật Óm cho các nhánh ta có: $I_{1}=10 \mathrm{~A} ; I_{2}=-1 A ; I_{3}=9 A$.

Chuong 2
 ĐIỆN TỪ

2-1. NHỠNG KHÁl NIẸM CƠ BẢN VỀ TỪ TRUỜNG

Nam châm vĩnh cửu, nam châm điện, dây dẫn mang dòng diẹn tạo ra xung quanh chưng từ trường. Từ trường được biểu diển bằng các đường sức từ trường (đường cảm ứng từ) đi từ cực bắc (N) tới cực nam (S) và trở về cực bắc qua lõi nam châm (hình 2.1a, b).

Hinh 2.1. Đường sức của nam châm
a) nam cham vĭnh cỉ̉n ; b) nam cham điẹn

Đới với day dẫn thẳng dài mang điện, chiều từ trường được xác định theo quy tắc vặn nứt chai: nêu chiều dòng điẹn trùng với chiều tiến của cái mở nút chai thì chiểu quay của cái mở nút chai xác định cho ta chiều từ trường ở mỗi điểm (hình 2.2a).

Ta cưng có thể sử dụng quy tắc bàn tay phài (hình 2.2 b) : ngón tay cái hướng theo chiều dòng điẹn, bớn ngơn tay còn lại chỉ hướng đường sức từ trường.

Hinh 2.2. Xác định chiêu đường sức từ trữ̀ng của dây đẵn thẳng mang dòng điện
Đơi với cuộn day gồm một só vòng dây có dòng điẹn ta cũng dû̀ng quy tắc mở nút chai đẻ xác định chiều đường sức từ trường: nếu chiều quay của cái mở nút chai trùng với chiều dòng điện thì chiều tiến củạ cái mở nút chai là chiều đường sức từ trường (hình 2:3).

Sự có mặt của từ trường trong khong gian dặc trưng bằng các biểu hiện sau:

1. Lực từ glựa các cực của nam chám

Hai cực khác ten của 2 nam châm đạt gàn nhaur, sẽ hút nhau (hình 2.4). Ngược lai 2 cực cùng tên đề gân nhau sẽ đấy nhau (hình 2.5).

Hinh 2.3. Xác định chiều đường sức tù̀ trừ̛̀ng của cuọñ day có dòng điẹn

Hinh 2.4. Lực hứt giữa 2 cực khác tên của 2 nam châm

2. Lực điện tù̀

Lực tác dụng lên day dā̃n có dòng diẹn dặt trong từ trường hoặc diên tích đang chuyển dogng trong từ trường.

3. Cảm ứng diện từ

Sự xuát hiện sức điện động cảm ưng vào một

Hinh 2.5. Lực đây giữa 2 cục cùng ten của 2 nam cham vờng day khi từ tường bién thiên hoạac thanh dā̃n chuyển đọng trong từ trường .

2-2. CỪ̛̀NG ĐỘ TỮ CẢM - CƯƠNG ĐỘ TỪ TRƯÒNG - TƯ THÔNG

Ơ trên đã thắy, từ trường phân bo trong không gian được biểu diển bằng các đường sức từ trường, nó là đường cong khép kín, tiép tuyến tại mōi điêm trùng với phương của từ trường tại điểm áy, mạt độ đường sức lớn hay nhỏ cho ta biết từ trường mạnh hay yếu. Cách biểu điển bằng đường sức cho ta thấy một cách tường minh sự phan bo của từ trường tuy nhiên trong tính toán, nghiên cứu, dể đạ̣c trưng cho từ trường người ta dưng khái niẹm vectơ cường độ từ cảm $\overrightarrow{\mathrm{B}}$.

1. Vectơ cường độ từ cảm $\overrightarrow{\mathbf{B}}$

Từ trường được đạ̣c trưng bởi đại lượng vật lý là vectơ cường độ từ cảm $\overrightarrow{\mathrm{B}}$ (gọi tắt là vectơ từ cảm, vectơ cảm ứng từ). Trị só B của vectơ từ cảm $\overrightarrow{\mathrm{B}}$ cho ta biết từ trường mạnh hay yêu. Chiều của vectơ từ cảm \vec{B} là chiều của từ trường (chiều của đường sức từ trương).

Trong hệ đơn vị quơc tê (SI), đơn vị của cường độ từ cảm là tesla, ky hiệu là T. Trong các máy diẹn, cường độ từ cảm B thường khoảng từ $1 T$ đến $1,6 T$.

2. Vectơ cường độ từ trường $\overrightarrow{\mathbf{H}}$

Trong chân không vectơ từ cảm $\overrightarrow{\mathrm{B}}$ đủ để mo tả trạng thái của từ trường. Nhưng trong mơi trường vật chất ta phải xét đến ảnh hưởng của chúng lên từ trường. Đẻ̉ thăy rõ, chúng ta hãy quan sát đường sức từ trường trong 2 trường hợp ở hình 2.6.

Hinh 2.6
Khi đặt vật liệu như giá̛y, thuỷ tinh, gõ̃, nhựa vào trong từ trường của một nam châm, đường sức từ không bị biên dạng (hình 2.6a), song khi đặt một tấm sắt (dẫn từ tớt) dường sức từ tập trung đi vào sắt, từ trường bị biến dạng (hình 2.6b). Đé̉ xêt dến ảnh hưởng này của môi trường vật chất, người ta dùng vectơ cường dộ từ trường $\overrightarrow{\mathrm{H}}$ đặc trưng cho từ trường trong các môi trường vạt chát.

Trong môi trường đẳng hướng (môi trường có các tính chất vật lŷ đồng nhất theo mọi hướng khác nhau), quan hệ giữa vectơ từ cảm $\overrightarrow{\mathrm{B}}$ và vectơ cường độ từ trường $\overrightarrow{\mathrm{H}}$ như sau:

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}=\mu_{0}\left(1+\chi_{m}\right) \cdot \overrightarrow{\mathrm{H}}=\mu \overrightarrow{\mathrm{H}} \tag{2-1}
\end{equation*}
$$

Trong dó:
χ_{m} - Đọ thẩm từ của mơi trường vật chắt, đặc trưng ảnh hưởng của môi trường.
μ_{0} - Hệ só (dộ) từ thả̉m của chân khơng.
μ - hẹ ṣo (đọ) từ thám của moi trường vạt chất.
Đơn vị của hệ sớ từ thám là henry trên mét, ký hiẹ̣u $\frac{\mathrm{H}}{\mathrm{m}}$.
Đơn vị của cường đọ từ trường là ampe trên mét, ký hiệu $\frac{A}{\mathrm{~m}}$.
Trong thực tê hệ só từ thấm của các vạt liệu dẫn từ lỡi gấp hàng nghìn lấn của chân không, đế so sánh người ta đưa khái niệm hệ só từ thẩm tương đói μ_{r}

$$
\begin{equation*}
\mu_{r}=\frac{\mu}{\mu_{0}} \tag{2-2}
\end{equation*}
$$

Trong ky thuạt điẹn, các vật liệu sắt từ dẩn từ rất tớt có μ_{r} từ vài trām đến vài vạn vì thế vật liệu sắt từ được sử dụng để chế tạo các mạch từ cho các thiét bị điện.

Biểu thức (2-1), áp dụng vào các bộ phận của các thiết bị điẹn ta có:
Trong khe hở không khí hoặc bọ phận không sắt từ:
Trong đó :

$$
\begin{equation*}
\mathbf{B}=\mu_{0} \mathrm{H} \tag{2-3}
\end{equation*}
$$

$$
\mu_{0}=4 \pi \cdot 10^{-7} \quad \frac{\mathrm{H}}{\mathrm{~m}}
$$

$$
\begin{equation*}
\mathrm{B}=\mu \mathrm{H}=\mu_{0} \mu_{\mathrm{r}} \mathrm{H} \tag{2-4}
\end{equation*}
$$

3. Từ thông ϕ

Khi nghiên cứu, thie̛t ké các thiết bị, ngoài các khái niệm $\overrightarrow{\mathrm{B}}, \overrightarrow{\mathrm{H}}$, người ta còn sử dụng khái niệm từ thông.

Thông lượng của vectơ $\overrightarrow{\mathrm{B}}$ xuyen qua một bề mặt S được gọi là từ thông ϕ (hình 2.7).

Khi vectơ \vec{B} thẳng góc với bề mặt S và có trị só băng nhau trên toàn mặt phẳng áy thì từ thong ϕ được tính là:

$$
\begin{equation*}
\phi=\mathrm{BS} \tag{2-5}
\end{equation*}
$$

Đơn vị của từ thông là vebe, ký hiệu là Wb.

Biểu thức (2-5) có thể viết là:

$$
\begin{equation*}
\mathrm{B}=\frac{\phi}{\mathrm{S}} \tag{2-6}
\end{equation*}
$$

Vậy cường độ từ cảm B

Hinh 2.7 chính là mật độ từ thông trên bề mặt S .

Ví dụ 1: Cường đọ từ cảm B dưới mặt cực của một nam châm có trị só là $8.10^{-3} \mathrm{~T}$. Diẹn tích mặt cực $S=10 \mathrm{dm}^{2}$. Tính từ thông cưa môi cực từ.

Lài giàl:

Từ thong của mōi cực từ

$$
\phi=\mathrm{BS}=8 \cdot 10^{-3} \cdot 10.10^{-2}=8.10^{-4} \mathrm{~Wb}
$$

Ví dụ 2 : Cường đọ từ cảm B trong lơi thêp của máy biến áp (hình 2.7) ià $1,45 \mathrm{~T}$.
Tiế diện ngang của lơi thêp $\mathrm{S}=120 \mathrm{~cm}^{2}$. Tính từ thông chạy trong lōi thép.

Lời giải :

Từ thông chạy trong lōi thép
$\phi=B S=1,45 \cdot 120 \cdot 10^{-4}=1,74 \cdot 10^{-2} \mathrm{~Wb}$

2.3. VẬT LIẸU SÁT TỪ

Các chá̛t sắt, niken, côban và những hợp kim của chúng làm thành nhơm những vật liệu sắt từ. Do cấu tạo vật chất của no, hẹ sơ từ thả̉m μ của vật liệu sất từ rất lớn (μ_{r} co trị sớ từ vài trăm đến vài vạn) và hệ só từ thả̉m không phải là hằng sơ mà là một hàm sơ của cường đọ từ trường H . Ngoài ra ở vật liệu sắt từ, có hiện tượng từ trễ, nghĩa là khi ta từ hoá lői sắt bằng dòng điện xoay chiều trong cả chu kỳ, quá trình diễn ra không thuận nghịch, nghĩa là khi tãng cường dọ từ trường H thì cường đọ từ càm B tăng, quan hệ theo nhánh tăng, và khi H giàm thì B sẽ giảm, quan hẹ vợi nhau theo nhánh giảm không trìng với nhánh tăng. Đường cong quan hệ giữa B và H trong cá chu ky từ hoá gọi là đường khép kín từ trể (hình 2.8).

Hinh 2.8

Trong viẹc tính toan mạch từ thường. dùng dường cong từ hoá trung bình $\mathrm{B}=\mathrm{f}(\mathrm{H})$ (hình 2.9).

Phụ thuộc vào loại thép sẽ có các dường cong từ hoá khác nhau. Hỉnh 2.10 là đường cong từ hoá của lá thép ky thuạt điẹn cán nguội.

Khi cường độ từ cảm thá̛p quan hệ $\mathrm{B}(\mathrm{H})$ theo đường cong I , khi cường đọ́ từ cảm lớn quan hẹ $\mathrm{B}(\mathrm{H})$ theo đường cong II.

Hinh 2.9

Ví dụ 3 : Loi thép của máy bién áp làm bằng thép co dương dặ tính từ hoá ở hình 2.10. Biế tiết diện ngang của lōi thep $\mathrm{S}=90 \mathrm{~cm}^{2}$, từ thong trong lozi thep $\phi=1,386.10^{-2} \mathrm{~Wb}$. Xác định aròng đọ tù̀ trường trong lôi thép.

Lời giải:

Cường dộ từ cảm:

$$
\begin{aligned}
B=\frac{\phi}{S} & =\frac{1,386 \cdot 10^{-2}}{90.10^{-4}} \\
& =1,54 \mathrm{~T}
\end{aligned}
$$

Hinh 2.10

Từ trị so B tra đường cong I hình 2.10 ta được trị so cường đọ từ trường $H=1,2 \cdot 10^{2} \mathrm{~A} / \mathrm{m}$

2.4. ĐỊNH LUẬT CẢM ƯNG ĐIỆN TỪ

1. Sức điện động cảm ứng khi từ thông xuyên qua vòng dây biến thiên

Hiện tượng cảm ứng điện từ do Faraday phát hiện năm 1931, sau đó năm 1833 Lentz phát hiẹn ra quy tấc về chiều. Nội dung định luạt như sau : khi từ thông xuyên qua vòng dây biến thiên, trong vòng dây sẽ cảm ưng ra súc diện động, súc điẹn động ấy có chiều sao cho dòng diện nó sinh ra có xu hướng chông lại sụ biến thiên của từ thông.

Nêu chọn chiều dương của sức điện đọng cảm ứng phù hợp với chiều của từ thông ϕ theo quy tắc vặn nút chai (hình 2.11) sức điẹn động cảm ung trong mọt vòng dây được viết theo cong thức Macxoen nhu sau :

$$
\begin{equation*}
\mathrm{e}=-\frac{\mathrm{d} \phi}{\mathrm{dt}} \tag{2-7}
\end{equation*}
$$

Hinh 2.1I

Dấu \otimes trên hình 2.11 chỉ chiều từ thông ϕ đi từ dộc giả vào trang giá́y.

Nếu cuộn dây có W vòng dây, sức điện động cảm ứng của cuộn dây sẻ là :

$$
\begin{equation*}
e=-W \frac{d \phi}{d t}=-\frac{d \psi}{d t} \tag{2-8}
\end{equation*}
$$

Trong dó

$$
\begin{equation*}
\psi=W \phi \tag{2-9}
\end{equation*}
$$

gọi là từ thông móc vòng của cuộn day.
Trong các công thức trên từ thông đo bằng vebe (Wb), sức điện động cảm ứng đo bằng vôn (V).

Ví dụ 4 : Hây xác định trị sớ và chiều sức điện động cảm ứng khi lõi sắt chuyển động hưỡng vào cuộn day (hình 2.12). Cho biét cuộn day có 200 vòng và tớc dộ bién thiên tù̀ thông xuyen qua mői vòng day bằng $0,5 \frac{\mathrm{~Wb}}{\mathrm{~s}}$.

Lời giài :

Chiêu từ thông ϕ và chiêu dương sức điện động cám ứng vê trên hình 2.12. Khi lōi sắt tiên vào giữa hai cực của nam cham vinh cửu, tì̀ thong xuyen qua vòng day tăng, lượng bién thien từ thông $\mathrm{d} \phi>0, \frac{\mathrm{~d} \phi}{\mathrm{dt}}=0,5$.

Sức diện đọng cảm ứng:

Hinh 2.12

Sức điện dọng e < 0 nghîa là chiêu sức diẹn dọng cảm ưng ngược va̛i chiêu dương đả chọn tren hình 2.12.

Ví dụ 5 : Mọt cuộn day 10 vòng hình chữ nhạt quay trong tù trường của một nam chàm (hình 2.13). Biêt rà̀ng vòng day quay vơi tớc đọ góc $\omega=314 \frac{\mathrm{rad}}{\mathrm{s}}$ và sau thòi gian t từ thong xuyen qua vòng day là :

$$
\phi=0,004 \cos 314 \mathrm{t} \mathrm{~Wb} .
$$

Tính sức điẹn động cảm ứng trong cuọn day.

Lờ giài :

Sức điện đọng càm ứng trong cuọn day

$$
e=--W \frac{d \phi}{d t}=-10 \frac{d(0,004 \cos 314 t)}{d t}=12,56 \sin 314 t \quad V
$$

Sức điẹn động e bién thien hình sin theo thòi gian. Đay là mợt ví dụ đơn giản giúp ta hiểu cách tạo ra dơng điẹn xoay chiều hình sin.
2. Sức điện động cảm ứng trong thanh dẩn chuyển động trong từ trường

Khi một thanh dẫn chuyển động cắt đường sức từ trường, trong thanh dā̃n sẽ cảm ứng sức điện đọng e có trị sơ là:

$$
\begin{equation*}
\mathrm{e}=\mathrm{Blvsin} \alpha \tag{2.10}
\end{equation*}
$$

Trong đó :
B - Cường đọ̉ từ cảm do bằng T .
1 - Chiểu dài hiệu dụng của thanh dẫn (phần thanh dā̃n nằm trong từ trường) đo bằng m .
v - Vận tớc của thanh dẫn đo bằng $\frac{\mathrm{m}}{\mathrm{s}}$
$\alpha-$ Góc giữa chiều vận tớc với chiều từ trường $\alpha=\widehat{(\overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{B}})}$
Khi chiều chuyển đọng vuông gớc với chiều từ trường (thường gặp trong máy điện, $\alpha=90^{\circ}$) thì sức điện đọng cảm ứng là:

$$
\begin{equation*}
\mathrm{e}=\mathrm{Blv} \tag{2.11}
\end{equation*}
$$

Chiều của sức điện động cảm ứng được xác định theo quy tắc bàn tay phài được phát biểu nhut sau:

Cho đường sức từ trường đi vào lòng bàn tay phải, chiều chuyển động của thanh dẫn theo chiều ngón tay cái xoè ra, thì chiều 4 ngón tay còn lại là chiều của súcc điện động cảm ứng (hình 2.14).

Hinh 2.14

Khi thanh dẫn chuyển động song song với phương từ trường, trong thanh dẫn sẽ không có sức điện động càm ứng.

Ví dụ 6 : Một thanh dẵ ab chiều dài $1=0,5 \mathrm{~m}$ (hình 2.15) nà̀m trong từ trường đêu $\mathrm{B}=1,4 \mathrm{~T}$. Người ta tác dụng một lực cơ học F_{co} làm cho nó chuyển dộng với vận
toc $\mathrm{v}=20 \frac{\mathrm{~m}}{\mathrm{~s}}$ thẳng goc vơi phương từ trường. Thanh dā̃n trượt trên hai thanh kim loại và hai đằu thanh kim loại nới với điẹn trở $R=0,5 \Omega$ làm thành mợt vòng kín. Coi điẹn trở của thanh kim loại rắt nhỏ và bo qua.

Tính sức diẹn đợng cản ứng trong thanh dân, công suất điẹn trở tiêu thụ, công suất cơ và lực co học tác dụng vào thanh dān.

Lờ giải :

Sức điện động cảm ứng trong thanh dān:

$$
e=B l v=1,4 \cdot 0,5 \cdot 20=14 V
$$

Dòng điện chạy qua điện trở R

$$
I=\frac{e}{R}=\frac{14}{0,5}=28 \mathrm{~A}
$$

Cong suất điẹn trở tiêu thu

$$
\mathrm{P}_{\mathrm{d}}=\mathrm{RI}^{2}=0,5 \cdot 28^{2}=392 \mathrm{~W}
$$

Bó qua tờn hao trong hệ thơng, theo định luât bảo toàn năng lượng công suất cơ tác dụng vào thanh dän phải bằng công suất điện phát ra cung cấp cho điện trở R.

Hinh 2.15

Vạy : Công suât cơ: $P_{c t}=P_{d}=392 \mathrm{~W}$
Lực cơ học tác dụng vào thanh dân là :

$$
F_{c o}=\frac{P_{c o}}{v}=\frac{392}{20}=19,6 \mathrm{~N}
$$

Đay là mợt ví dụ đơn giản, giúp ta hiểu nguyên ly làm việc của các máy phât điện là: Nhờ tư trơờng, cơ năng đıta vào trụ của may phát điẹn đượ biến đói thành điện năng lá̀y ra d̉ dày quăn cua máy phát dé cung cáp cho tai.

2.5. ĐỊNH LUẬT LỰC ĐIỆN TỪ

Khi thanh dả̉n mang dòng điện nàm trong từ trường, thanh dẵn sẽ chịu lực điện từ tác dụng có trị só là :

$$
\begin{equation*}
\mathrm{F}_{\mathrm{dt}}=\mathrm{BIl} \sin \alpha \tag{2-12}
\end{equation*}
$$

Trong do :
B - Cường độ từ cảm đo bằng T .
I - Dòng điện đo bằng A .
1 - Chiếu dài hiệu dụng thanh dẵn đo bằng m.
$\alpha-$ Góc giữa chiều dòng diện và chiều từ trường $\alpha=(\widehat{\bar{I}}, \widehat{\mathrm{~B}})$.
$F_{a t}$ - Lực điẹn từ đo bằng N (niutơn).

Khi thanh dẳn đặt vuoong góc với từ trường (là trường hợp thường ge trong máy điện, $\alpha=90^{\circ}$) lực điẹ̣n từ là :

$$
\begin{equation*}
\mathrm{F}_{\mathrm{dt}}=\mathrm{BII} \tag{2-13}
\end{equation*}
$$

Chiều lực điện từ xác định theo quy tắc' bàn tay trái (hình 2.16) nhự sau : cho chiều dương sû́c từ trường xuyên vào lòng bàn tay trâi, chiếu dòng điện trùng với chiều 4 ngón tay, thi chiều ngón tay cái xoè ra là chiếu lưc diện từ $F_{d t}$.

Ví dụ 7 : Mọt thanh dān $\mathrm{I}=2 \mathrm{~m}$ có dòng diẹn $I=150 \mathrm{~mA}$ chạy qua, dặt vuông góc vơi từ trương dều $\quad \mathrm{B}=1,2 \mathrm{~T}$. Chiều dòng điẹn đi từ dộc giả vào trang giáy (hình 2.17).

Tính trị sơ và chiếu lực diện từ tác dụng lên thanh dẫ.

Lờ giài :

Trị só của lụ̣c điẹn từ

Hinh 2.16

$$
\mathrm{F}_{\mathrm{dt}}=\mathrm{BII}=1,2 \cdot 0,15 \cdot 2=0,36 \mathrm{~N}
$$

Áp dụng quy tắc bàn tay trái ta xác định được chiều lực điẹn từ hương xuơng dưới.

Ví dụ 8: Xác định trị sơ và chiéu của lực điện từ F_{dt} tác dụng lên thanh dẫn trong ví dụ 6.

Lài giài :

Lực điẹn từ tác dụng lên thanh dân:

Hinh 2.17
$\mathrm{F}_{\mathrm{dt}}=\mathrm{Bll}=1,4 \cdot 28 \cdot 0,5=19,6 \mathrm{~N}$
Chiêu của lực điện từ xác định theo quy tắc bàn tay trái vẽ trên hình 2.15.
Ta tháy rằng trong ví dụ 6 thanh dẵn đơng vai trò phát điện, lụ̣c điện từ $F_{u t}$ có tác dụng hăm (hình 2.15) cân bả̀ng với lực cơ tác dụng vào thanh, nhờ đó thanh dân chuyển động vợi vạn tớc v khong dới.

2.6. ĐỊNH LUẠT MACH TƯ - TÍNH TOÁN MẠCH TỪ

1. Định luật dòng điẹ̀n toàn phần áp dụng cho mạch tù

Mạch từ gồm các bộ phận sau: bộ phạan dẵn từ gồm chủ yếu là các đoạn làm bằng vật liệu sắt từ nối lại với nhau thành mọt mạch khép kín để dẫn từ thơng và nguồn từ họá là cuộn dáy có dòng điẹn để tạo ra từ thông trong mạch.

Hình 2.18 là mạch từ đơn giản đồng nhất bằng thép kỹ thuật điện, chỉ co một cuộn dây. Khi có dòng điện I đi qua cuộn day, sẽ tạo ra từ thông chạy trong mạch từ. Vì rằng hệ sớ từ thẩm μ của thép lớn hơn của không khí bao quanh rất nhiều nên hầu hết từ thông tạ̣p trung chạy trong mạch từ.

Định luạt dòng điện toàn phần áp dụng vào mạch từ hình 2.18 được viết nhut sau :

$$
\begin{equation*}
\mathrm{WI}=\mathrm{Hl} \tag{2-14}
\end{equation*}
$$

Trong đó :
H - cường độ từ trường trong mạch từ đo bằng A / m.

1 - chiều dài trung bình của mạch từ đo bằng m .

W - só vòng dây của cuộn dây.
Dòng điện I tạo ra từ thong cho mạch từ, gọi là dòng điện từ hoá.

Tích só WI dược gọi là sức từ động.

Hl được gọi là từ áp rơi trong mạch từ.

Hinh 2.18

Đơi với mạch từ gồm nhiều cuộn dây và nhiểu đoạn khác nhau (các đoạn làm bằng vật liệu khác nhau, hoạ̣c tiét diện khác nhau), ví dụ mậch từ hình 2.19 thì định luạt mạch từ viết là:

$$
W_{1} I_{1}-W_{2} I_{2}=H_{1} I_{1}+H_{2} \mathrm{l}_{2}
$$

Trong đó :
$\mathrm{H}_{\mathrm{l}}, \mathrm{H}_{2}$ - tương ứng là cường dọ từ trường trong doạn $1,2$.
$1_{1}, 1_{2}$ - chiều dài trung bình doạn 1,2 .
$\mathrm{H}_{1} \mathrm{l}_{1}, \mathrm{H}_{2} \mathrm{l}_{2}$ - gọi là từ áp doạn 1,2 .
$W_{1} I_{1}, W_{2} I_{2}$ - sức từ động day quấn 1,2 .
$\mathrm{S}_{1}, \mathrm{~S}_{2}$ - tiết diện đoạn $1,2$.
Chú ý rằng : có dấu - trước $\mathrm{W}_{2} \mathrm{I}_{2}$ vì dòng điện I_{2} sinh ra từ thông ngược với chiều từ thông đã chọn theo quy tắc vặn

Hinh 2.19 nút chai.

Mọt cách tởng quát đơi với mạch từ cón n đoạn và m cuộn dây định luậ mạch từ được viết:

$$
\begin{equation*}
\sum_{j=1}^{m} W_{j} I_{j}=\sum_{k=1}^{n} H_{k} l_{k} \tag{2-15}
\end{equation*}
$$

Trong đó : dòng điẹn I_{j} nào có chiều phù hợp với chiều từ thông ϕ đã chọn theo quy tấc vạ̣n nút chai sẽ mang dấu dương, không phù hợp sẽ mang dấu âm.
k - Chỉ só́ tên đoạn mạch từ.
j - Chỉ só tên cuộn dây dòng điện.
Công thức 2-15 được gọi là định luật mạch tù̀.
Ví dụ 9 : Mọt mạch từ hình 2.20. Đường cong từ hoá $\mathrm{B}=\mathrm{f}(\mathrm{H})$ của vạt liệu cho ở báng sau :

$\mathrm{B}(\mathrm{T})$	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	1,1	1,2	1,25	1,3	1,35
H $(\mathrm{A} / \mathrm{m})$	52	58	65	76	90	110	132	165	220	300	380	600	900

B(T)	1,4	1,45	1,5	1,55	1,6	1,65	1,7
H (A / m)	1200	2000	3000	4500	6000	10000	14000

Cho biết từ cảm trong khe hở $\mathrm{B}_{2}=1,3 \mathrm{~T}$ và cuộn day có 1000 vòng. Tính dòng điẹn trong cuộn day.

Là giả̀:

Cường đọ từ trường trong khe hở không khí.
$H_{2}=\frac{B_{2}}{\mu_{0}}=\frac{1,3}{4 \pi .10^{-7}}=1035032 \mathrm{~A} / \mathrm{m}$
Cường dô từ trường trong đoạn thép : từ $\mathrm{B}_{1}=1,3 \mathrm{~T}$ tra bảng được $\mathrm{H}_{1}=600 \mathrm{~A} / \mathrm{m}$.

Áp dụng định luạt mạch từ:

$$
\mathrm{WI}=\mathrm{H}_{1} \mathrm{I}_{1}+\mathrm{H}_{2} \mathrm{l}_{2}
$$

$10001=600.0,4+1035032.0,001$
Từ đó: $\mathrm{I}=\frac{1275}{1000}=1,275 \mathrm{~A}$

Hinh 2.20

Ví dụ 10 : Mạch từ hình 2.21 gờm 3 cuộn day
$\mathrm{W}_{1}=2000$ vòng ; $\mathrm{I}_{1}=0,5 \mathrm{~A}$
$W_{2}=400$ vòng ; $I_{2}=1 \mathrm{~A}$
$W_{3}=1000$ vòng.
Đường cong từ hoá của vật liệu $B=f(H)$ cho ở ví dụ 9. Cho biết từ thông trong lõi thép bằng $1,5 \cdot 10^{-3} \mathrm{~Wb}$.

Xác định đòng điẹn I_{3}.

Lời giải:

Chọn chiều từ thông như hình 2.21 .

Từ cám trong lōi thép

$$
B=\frac{\phi}{S}=\frac{1,5 \cdot 10^{-3}}{10.10^{-4}}=1,5 \mathrm{~T}
$$

Tra bảng đường cong từ hoá

Hinh 2.21 ờ ví dụ 9.

Từ trị só: $\mathrm{B}=1,5 \mathrm{~T} ; \mathrm{H}=3000 \mathrm{~A} / \mathrm{m}$
Áp dụng định luạt mạch từ:

$$
\mathrm{Hl}=\mathrm{W}_{1} \mathrm{I}_{1}-\mathrm{W}_{2} \mathrm{I}_{2}+\mathrm{W}_{3} \mathrm{I}_{3}
$$

Suy ra: $\quad I_{3}=\frac{H I-W_{1} I_{1}+W_{2} I_{2}}{W_{3}}=\frac{3000.0,5-2000.0,5+400.1}{1000}$

$$
\mathrm{I}_{3}=0,9 \mathrm{~A}
$$

2. Định luạ́t Ôm cho mạch từ

Từ (2-4) $\mathrm{H}=\frac{\mathrm{B}}{\mu}$ và $(2-5) \mathrm{BS}=\phi$ thay vào biểu thức $(2-14)$ ta có :

$$
\begin{equation*}
\mathrm{WI}=\mathrm{HI}=\frac{\mathrm{B}}{\mu} \cdot \frac{\mathrm{Sl}}{\mathrm{~S}}=\phi \cdot \frac{\mathrm{l}}{\mu \mathrm{~S}} \tag{2-16}
\end{equation*}
$$

Từ thông ϕ chạy trong mach từ tương tự như dòng diện I chạy trong mạch điện, khi thiết lập mô hình mạ̣ch từ, từ biểu thức $(2-16)$ người ta đưa vào các khái niệm sức từ động F_{m} và từ trở R_{m} như sau:

a. Súcc từ dộng F_{m}

Sức từ dộng F_{m} đặc trưng cho khả năng tạo ra từ thông trong mạch từ.
(Tương tự như sức điẹn động E tạo ra dòng điện I trong mạch điẹn).

Sức từ đọng F_{m} của cuộn dây dòng điện được tính là:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{m}}=\mathrm{WI} \tag{2-17}
\end{equation*}
$$

Trong đó:
W-só vòng day
I - dòng diện chạy trong cuộn day
Đơn vị của sức từ động là ampe, ký hiệu là A .

b. Tiut trở \boldsymbol{R}_{m}

Từ trở R_{m} là đại lượng đạ̃c trưng cho vạt dã̃n từ về mıặt cản trở từ thông chạy qua. (Tương tự như điện trở R hạn chế dòng điện trong mạch điện).

Từ trở của một vật dẫn từ phụ thuộc vào bản chất và kích thước của nó.
Từ trở của một vật dẫn từ đồng chắt có hệ sớ từ thẩm μ, tiết diện S , chiều dài l được tính là:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{m}}=\frac{1}{\mu \mathrm{~S}} \tag{2-18}
\end{equation*}
$$

Đơn vị của từ trở là $\frac{1}{\mathrm{H}}=\frac{\mathrm{A}}{\mathrm{Wb}}$
Sau khi đưa khái niệm sức từ dộng F_{m}, từ trở R_{m}, biểit thức (2-16) được viết là :

$$
\begin{equation*}
\mathrm{F}_{\mathrm{m}}=\phi \mathrm{R}_{\mathrm{m}} \tag{2-19}
\end{equation*}
$$

Biểu thức (2-19) (tương tự như dịnh luậ Ôm chc mach diẹn $\mathrm{E}=\mathrm{IR}$), được gọi là định luạt Ôm cho mạch tù.

Ví dụ 11: Tính từ trở của mọt đoan mạch từ làm bằng thép $\mu=1500 \mu_{0}$, có tiét diẹn ngang $S=120 \mathrm{~cm}^{2}$, chiều ḍà $I=50 \mathrm{~cm}$.

Lò̀ giải :

Từ trở của đoạn mạch từ là :

$$
R_{m}=\frac{1}{\mu \mathrm{~S}}=\frac{50.10^{-2}}{1500.4 \pi \cdot 10^{-7} \cdot 120 \cdot 10^{-4}}=2,21 \cdot 10^{4} \frac{1}{\mathrm{H}}
$$

Ví dụ 12 : Một nam châm điẹn một chiều có 1250 vòng dây, dòng điẹn chạy trong cuộn day $\mathrm{I}=0,2 \mathrm{~A}$. Tính sức từ đọng của nam cham điện.

Lè̀i giải :

Sức từ đọng của nam cham điện

$$
\mathrm{F}_{\mathrm{m}}=\mathrm{WI}=1250 \cdot 0,2=250 \mathrm{~A}
$$

Ví dụ 13: Mồt mạch từ như hình 2.22a, phẩn thêp có chiều dả̀i trung bình $\mathrm{l}_{\mathrm{Fe}}=75 \mathrm{~cm}$, tiết diện $\mathrm{S}=100 \mathrm{~cm}^{2}$, phần không khí có chiều dài $\mathrm{l}_{\delta}=2 \mathrm{~mm}$. Biết hệ s σ từ thả̉m của thép $\mu_{\mathrm{Fe}}=1725 \mu_{0}$, dòng điẹn trong cuộn dây $\mathrm{I}=100 \mathrm{~A}$.

Xác định so vòng day W để có từ cảm trong khe hở khêng khí $\mathrm{B}_{\delta}=1,3 \mathrm{~T}$.

Lời giải :

Mô hình mạch từ vẽ trên hình 2.22 b .
Trước hết tính từ trở của các đoạn mạch tù̀.
Từ trớ phân thép :

$$
\mathrm{R}_{\mathrm{Fe}}=\frac{\mathrm{l}_{\mathrm{Fe}}}{\mu_{\mathrm{Fe}} \mathrm{~S}}=\frac{75 \cdot 10^{-2}}{1725.4 \pi \cdot 10^{-7} \cdot 100 \cdot 10^{-4}}=3,46.10^{4} \frac{1}{\mathrm{H}}
$$

Từ trở phần khe hở không khí

$$
\mathrm{R}_{8}=\frac{\mathrm{l}_{8}}{\mu_{0} S}=\frac{2 \cdot 10^{-3}}{4 \pi \cdot 10^{-7} \cdot 100 \cdot 10^{-4}}=1,59 \cdot 10^{5} \frac{1}{\mathrm{H}}
$$

a)

b)

Hinh 2.22
Tù thong chạy trong mach từ :

$$
\phi=\mathrm{B}_{8} S=1,3 \cdot 100 \cdot 10^{-4}=1,3 \cdot 10^{-2} \mathrm{~Wb}
$$

Áp dụng định luậ: Óm cho mạch từ ta có sức từ đợng toàn mạch:

$$
\begin{aligned}
& \mathrm{WI}=\mathrm{F}_{\mathrm{m}}=\phi\left(\mathrm{R}_{\mathrm{Fe}}+\mathrm{R}_{\delta}\right)=1,3 \cdot 10^{-2}\left(3,46 \cdot 10^{4}+1,59 \cdot 10^{5}\right) \\
& \mathrm{F}_{\mathrm{m}}=2516,8 \mathrm{~A}
\end{aligned}
$$

Só vòng dáy là :

$$
W=\frac{F_{m}}{I}=\frac{2516,8}{100} \approx 25 \text { vòng }
$$

Từ áp rơi trên phần thép $\mathrm{U}_{\text {mic }}$

$$
\mathrm{U}_{\mathrm{mFi}}=\phi \mathrm{R}_{\mathrm{lit}}=1,3 \cdot 10^{-2} \cdot 3,46 \cdot 10^{4}=4,498 \cdot 10^{2} \mathrm{~A}
$$

Từ áp rở trên phấn khe hở khơng khí

$$
U_{m \delta}=\phi R_{\delta}=1,3 \cdot 10^{-2} \cdot 1 ; 59 \cdot 10^{5}=2,067 \cdot 10^{3} \mathrm{~A}
$$

Tổng từ áp rơi trên toàn mạch là :

$$
\mathrm{U}_{\mathrm{mlc}}+\mathrm{U}_{\mathrm{m} \delta}=4,5 \cdot 10^{2}+2,067 \cdot 10^{3}=2516,8 \mathrm{~A}
$$

Ta tháy tổng từ áp rơi trên toàn mạch từ khép kín bằng tổng sức từ đọng F_{r} trong mạch từ (tương tự như định luạt Kiécshôp 2 trong mạch điện đã học ở chương I).

Từ sự tương tự giữa mạch từ và mạch điện, ta có thể sử dụng các phương pháp giải mạch điện để giải mạch từ.

CÂU HỎI ÔN TẬP VÀ BÀl TẬP

2.1. Hãy viết biểu thức quan hệ giữa cường độ từ cảm B và từ thông Φ và đơn vị của chúng.
2.2. Hảy viết biểu thức quan hệ giữa cường độ từ cảm B và cường độ từ trường H và đơn vị của chúng.
2.3. Phát biểu định luật cảm ứng điện từ.
2.4. Phát biểu định luật lực điện từ.
2.5. So sánh sự tương tự giữa so đồ mạch điện và so đồ mạch từ, chỉ rō các đại Jự̛̣ng tưong tự nhau.
2.6. Từ thông xuyên qua một tlết diện $S=50 \mathrm{~cm}^{2}$ bằng $\Phi=6.10^{-3} \mathrm{~Wb}$. Cho biết từ trường phân bớ đều trên diện tich S . Tính cường độ từ cảm B .

Đáp só $B=1.2 T$
2.7. Một cuộn dây 500 vòng. Người ta đưa một nam châm tiến gẩn đến cuộn dây. Biết rầng tốc độ biến thiên từ thông qua cuộn dây là $0,6 \frac{\mathrm{~Wb}}{\mathrm{~s}}$. Tính sức điện động cảm ứng trong cuộn dây.

Đáp só $\mathrm{e}=300 \mathrm{~V}$
2.8. Một thanh dẫn có chiều dài $i=0,6 \mathrm{~m}$ chuyển động thả̉ng góc vá̛i một từ trữ̀ng đểu giữa 2 cực của một nam chåm. Cho biết diện tích mặt cực nam châm $\mathrm{s}=12 \mathrm{~cm}^{2}$, từ tho̊ng dưới mỗi cực $\Phi=1,44.10^{-3} \mathrm{~Wb}$, tớc độ $\mathrm{v}=14 \mathrm{~m} / \mathrm{s}$. Tính sức điện động cảm ứng trong thanh dẳn.

Đáp só $\theta=10,08 \mathrm{~V}$
2.9. Thanh đã̉n trong bài sớ 2.8 cung cấp điện cho điện trở $R=2 \Omega$. Tính lực điện từ tác dưng Jền thanh đẫn. Chiều của lực điện từ và chiều v quan hệ với nhau như thế nào ? Vai trò của lực điện từ trong trường hơp này.
©áp só $F_{d t}=3,6288 \mathrm{~N} ; \vec{F}_{\text {đt }}$ ngực chiéu $\vec{v} ; F_{\text {ot }}$ đóng vai trò lurc hām. ${ }^{\circ}$
2.10. Tính từ trở cửa đoạn mạch từ khe hỏ không khí dài $I=2 \mathrm{~mm}$, tiết diện $\mathrm{S}=$ $120 \mathrm{~cm}^{2}$.

Đáp só $R_{M}=1,326.10^{5} \frac{1}{H}$
2.11. Tính từ trở của đoạn mạch từ làm bằng thép dài $J=7 \mathrm{~cm}$; tiớt diện hình vuống cạnh 3 cm . Biết hậ sớ từ thẩm $\mu=500 \mu_{0}$.

Dáp són : $R_{M}=1,238.10^{5} \frac{1}{\mathrm{H}}$
2.12. Một mạch từ lảm bầng thép có hệ sờ từ thẩm $\mu=750 \mu_{0}$; chiŝ́u dà̀i mạch tự $I=1,26 \mathrm{~m}$. Tiết diện mạch từ $\mathrm{S}=20 \mathrm{~cm}^{2}$. Cuộn dây 650 vòng mang dòng điện $\mathrm{I}=3 \mathrm{~A}$.

Tính a. Sức từ đồng mạch từ
b. Từ trở R_{M} của mach từ
c. Từ thóng chąy trong mąch từ
d. Cường đợ từ cảm và cường độ từ trường trong mạch từ.

Đáp só: $F_{m}=1950 \mathrm{~A}$

$$
\begin{aligned}
& R_{M}=6,68.10^{5} \frac{1}{H} \\
& \Phi=2,917.10^{-3} \mathrm{~Wb} \\
& B=1,458 \mathrm{~T} \\
& H=1547 \frac{\mathrm{~A}}{\mathrm{~m}}
\end{aligned}
$$

Chutơng 3

DÒNG ĐIỆN XOAY CHIỀU HİNH SIN

Dòng điện xoay chiểu hình sin được sử dụng phở biến trong sản xuát và đời sơng xã hội.

3.1. CÁCH TẠO RA SƯC ĐIẸN ĐỘNG XOAY CHIÊU HINH SIN

O chương 2, khi nghiên cứu về định luạt cảm ứng điện từ, đã đưa ra các ví dụ về cách tạo ra sức diện động xoay chiều hình sin. Người ta tác dụng lực cơ học vào trục làm cho khung day quay, cắt đường sức từ trường của nam châm NS, trong khung day sẽ cảm ứng sức điện động xoay chiều hình sin.

Hinh 3.2

Hinh 3.1
Dòng điện cung cấp cho tải thông qua vòng trượt và chởi than (hình 3.1). Khi công suất điện lớn, cách láy điẹn như vậy gạ̣p nhiều khó khăn ở chō tiếp xúc giữa vành trượt và chởi than.

Trong công nghiệp, máy phăt điện xoay chiểu được chế tạo như sau: dây quấn đứng yên trong các rănh của lōi thép là phân tĩnh và nam châm NS là phần quay.

Khi tác dụng lực cơ học vào trục làm nam châm NS quay, trong day quấn ở phấn tīnh sê cảm ứng ra sức điện động xoay chiều hình \sin. Day quấn đứng yên nên việc lấy điện cung cấp cho tải rất an toàn và thuận lợi. Mồ hình của máy phát điện xoay chiều vẽ trên hình 3.2.

Cấu tạo chi tiết của máy phát điện xoay chiều được viết trong sách máy điện.

3.2. CÁC mịnh nghía về dóng ĐIện xoay chiêu Hìnt SIN

Dòng điện xoay chiêu hình sin là dòng điện biến đổi mợt cách chu kỳ theo quy luạt hình sin với thời gian, được biểu diễn bằng đô thị hình sin trên hình 3.3.
$\mathrm{i}=\mathrm{I}_{\text {max }} \sin \left(\omega \mathrm{t}+\Psi_{\mathrm{i}}\right)$

1. Chu kỳ T, tân só f, tân só góc ω

Chu kỳ T là khoảng thời gian ngắn nhắt để dòng điện lạ̣p lại trị so và

Hinh 3.3 chiều bién thièn.

Tân sơ f là so chu kỳ của dòng điện trong một giây

$$
\begin{equation*}
\mathrm{f}=\frac{1}{\mathrm{~T}} \tag{3-2}
\end{equation*}
$$

Đơn vị của tần só là héc, ký hiẹu là Hz .

Tẩn só góc ω là tớc đô biến thiên của dòng điện hình \sin, đơn vị là rad/s.

Quan hẹ giứa tần so goc ω và tần sơ f là:

$$
\begin{equation*}
\omega=2 \pi \mathrm{f} \tag{3-3}
\end{equation*}
$$

Ví dụ 1: Tren hình 3.4 vé

Hinh 3.4 điện áp xoay chiễu hình sin.

Hãy xác định chu kỳ T và tàn só f.
Lơi giải: Chu kỳ T của điẹn áp được xác định một cách dē dàng từ điềm trị so 0 tơi thời điểm 0 liền sau đó.

$$
T=1 \mu \mathrm{~s}
$$

Tần so của điện áp

$$
f=\frac{1}{1.10^{-6}}=10^{6} \mathrm{~Hz}
$$

Ví dụ 2: Dòng diện xoay chiều trong sản xuắt và sinh hoạt ở nước ta có tản sơ $\mathrm{f}=$ 50 Hz . Tính chu kỳ. T và tần so góc ω.

Lời giải: Chu kỳ của dòng điẹn

$$
\mathrm{T}=\frac{1}{\mathrm{f}}=\frac{1}{50}=0,02 \mathrm{~s}
$$

Tần sơ góc của dòng điện

$$
\omega=2 \pi \mathrm{f}=2 \pi .50=314 \frac{\mathrm{rad}}{\mathrm{~s}}
$$

2. Trị số tức thời của dòng điện

Trị só tức thời là trị sớ ứng với mỗi thời điểm t . Trong biểu thức (3-1) trị sớ tức thời phụ thuợc vào biên độ $I_{\max }$ và góc pha ($\omega \mathrm{t}+\Psi_{\mathrm{i}}$).

- Biên độ $I_{\text {max }}$ là trị só cực đại, nơi lên dòng điện lớn hay nhỏ.
- Góc pha ($\omega \mathrm{t}+\Psi_{\mathrm{i}}$) nói lên trạng thái của dòng điện ở thời điểm t . ̛̉ thời điểm $t=0$ góc pha của dòng điẹn là $\Psi_{i} \cdot \Psi_{i}$ được gọi là góc pha ban đầu (hoậc gọi ngắn gọn là pha đầu) của dòng điện.

Góc pha đâu Ψ phụ thuộc vào thời điểm chọn làm góc thời gian (thời điểm $\mathrm{t}=0$). Góc pha đầu là đoạn NO trong đó N là điểm dòng điện đi qua trị số không từ âm đén dương, gần điểm gốc O nhất. Trên hình 3.5 chỉ ra góc pha đầu Ψ_{1} khi chọn gớc tọa độ khác nhau.

$\Psi_{i}>0$
a)

$$
\Psi_{\mathrm{i}}=0
$$

b)

$$
\Psi_{i}<0
$$

c)

Hinh 3.5
Ví dụ 3: Trên hình 3.6 vẽ đường cong biến thiên của dòng đện cón tàn són góc $\omega=314 \mathrm{rad} / \mathrm{s}$.

Hãy xác định biên độ, pha đấu Ψ_{i} và viết biẻ̉u thức đòng điện tức thời, khi chọn g óc toạ đọ ờ điém $\mathrm{O}, \mathrm{O}^{\prime}$ và $\mathrm{O}^{\prime \prime}$.

Là̀ giài:

Dựa vào đô thị cưa dòng diện ta có:

$$
I_{\max }=4,5 \mathrm{~A}
$$

a) Khi chọn gớc toạ đọo ở điểm O, pha đâu $\Psi_{\mathrm{i}}=0$

Biểu thức dòng diện tức thơi

$$
i=4,5 \sin 314 t
$$

b) Khi chọn gớc tọa đọ ở điểm O^{\prime}

$$
\Psi_{\mathrm{i}}=\frac{\pi}{4}
$$

Hinh 3.6

$$
i=4,5 \sin \left(314 t+\frac{\pi}{4}\right)
$$

c) Khi chọn gớc toạ đọ ở O"

$$
\begin{gathered}
\Psi_{1}=-\frac{\pi}{4} \\
i=4,5 \sin \left(314 t-\frac{\pi}{4}\right)
\end{gathered}
$$

3. Góc.lệch pha φ giữa điện áp và dòng điện

Ở trện đã xét biểu thức trị sớ tức thời của dòng điẹn

$$
\mathrm{i}=\mathrm{I}_{\max } \sin \left(\omega \mathrm{t}+\Psi_{\mathrm{i}}\right)
$$

Mộ cách tương tự, ta có biểu thức trị so tức thời của điện áp

$$
\mathbf{u}=\mathrm{U}_{\max } \sin \left(\omega \mathrm{t}+\Psi_{u}\right)
$$

Trong đó $U_{m a x}, \Psi_{u}$ - biên độ, pha đầu của điện áp. Điẹn áp và dòng điện biến thiền cùng tần sớ, song phụ thuộc vào tính chất mạch điện, góc pha của chúng có thẻ̉ không trùng nhau, người ta gọi giữa chúng có sự lệch pha. Góc φ thường được đùng để ký hiệu góc lệch pha giữa điẹn áp và đòng điẹnn.

$$
\begin{equation*}
\varphi=\Psi_{u}-\Psi_{i} \tag{3-4}
\end{equation*}
$$

Khi $\varphi>0$ - điẹn áp vượt trước dòng điện (hoặc dòng điện chậm sau điện áp)
$\varphi<0$ - điện áp chậm sau dòng điện (hoặc dòng điện vượt trước điện áp)
$\varphi=0$ - điẹn áp trùng pha vớ dòng điẹn

3.3. TRỊ SỐ HIẸU DƯNG CỦA DÒNG ĐIỆN

Ta biết rằng tác dụng nhiệt và lực điện từ tỳ lệ với bình phương dòng điện. Đới với dòng điện biến thiên có chu kỳ T thì tác dụng này tỷ lệ với trị só trung bình bình phương của dòng điện trong một chu kỳ T .

Trị só trung bình bình phương trong mợt chu kỳ được gọi là trị số hiệu dụng I.

Trị số hiệu dụng của dòng điện được tính là :

$$
\mathrm{I}=\sqrt{\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{i}^{2} \mathrm{dt}}
$$

Thay thế $\mathrm{i}=\mathrm{I}_{\max } \sin \omega \mathrm{t}$ vào biểu thức trên.

$$
I=\sqrt{\frac{1}{T} \int_{0}^{T} I_{\max }^{2} \sin ^{2} \omega t d t}=I_{\max } \sqrt{\frac{1}{T} \int_{0}^{T^{T}} \sin ^{2} \omega t d t}
$$

Vi $\sin ^{2} \omega t=\frac{1}{2}-\frac{\cos 2 \omega t}{2}$ cho nen

$$
\int_{0}^{\mathrm{T}} \sin ^{2} \omega \mathrm{dt}=\frac{1}{2} \int_{0}^{\mathrm{T}} \mathrm{dt}-\frac{1}{2} \int_{0}^{\mathrm{T}} \cos 2 \omega \mathrm{dtt}
$$

Trong đó: $\quad \frac{1}{2} \int_{0}^{\mathrm{T}} \mathrm{dt}=\frac{\mathrm{T}}{2}$

$$
\frac{1}{2} \int_{0}^{T} \cos 2 \omega t d t=0
$$

Cho nên $\quad \int_{0}^{T} \sin ^{2} \omega \mathrm{dt}=\frac{\mathrm{T}}{2}$
Do đó

$$
I=I_{\max } \sqrt{\frac{1}{T} \cdot \frac{T}{2}}=\frac{I_{\max }}{\sqrt{2}}
$$

Vạy trị só hiệu dụng của dòng diẹn hình sin là:

$$
\begin{equation*}
\mathrm{I}=\frac{\mathrm{I}_{\max }}{\sqrt{2}} \approx 0,707 \mathrm{I}_{\max } \tag{3-5}
\end{equation*}
$$

Tương tự như vậy ta có trị só hiệu dụng của điện áp và sức điện động xoay chiểu hình sin là :

$$
\begin{align*}
& \mathrm{U}=\frac{\mathrm{U}_{\max }}{\sqrt{2}} \approx 0,707 \mathrm{U}_{\max } \tag{3-6}\\
& \mathrm{E}=\frac{\mathrm{E}_{\max }}{\sqrt{2}} \approx 0,707 \mathrm{E}_{\max } \tag{3-7}
\end{align*}
$$

Trị só hiệu đụng là đại lượng quan trọng của mạch diẹn xoay chiều. Ta nói dơng điện xoay chiếu này bằng bao nhiêu ampe hoạ̣c điẹn áp xoay chiểu này bằng bao nhieu von là nơi trị só hiệu dụng của chúng. Các trị só ghi trên nhãn các thiêt bị điện, các dụng cụ đo lường (sử dụng dòng điện xoay chièu) là trị số hiệu dụng.

Chú ý: Để phân biẹt cần chú ý các ký hiẹuu:

- - i, u - trị só tức thời, ký hiệu chữ in thường
- I, U - trị só hiệu dụng ký hiệu chữ in hoa
- $\mathrm{I}_{\text {max }}, \mathrm{U}_{\text {max }}$ - biên đọ (trị số cực đại).

Ví dụ 4: Dòng điẹn hình sin trong ví dụ 3 chay qua diẹn trờ $R=10 \Omega$. Tïnh công suăt P , diẹn năng A của diẹn trở tiêu thụ trong 20 giờ.

Lờ giải : Trị sơ cực đại dòng điẹn $\mathrm{I}_{\text {max }}=4,5 \mathrm{~A}$, trị sơ hiẹu dụng của dòng điẹn qua điện trờ là:

$$
I=\frac{I_{\max }}{\sqrt{2}}=\frac{4,5}{\sqrt{2}}=3,18 \mathrm{~A}
$$

Cong suất diẹn P của điẹn trờ

$$
P=R \mathbf{I}^{2}=10 \cdot(3,18)^{2}=101,1 \mathrm{~W}
$$

Diện năng diẹn trờ tiêu thụ trong 20h

$$
\mathrm{A}=\mathrm{Pt}=101,1.20=2022 \mathrm{~Wh}=2,022 . \mathrm{kWh}
$$

3.4. BIÊU DIỄN DÒNG ĐIỆN XOAY CHIÊU HÌNH SIN BÀ̀NG VECTO

Ở trên ta đã biểu diễn điện áp, đòng điện bằng đường hình sin, cách biếu diễn này cūng như biểu thức giải tích trị sơ tức thời, giúp ta thây rõ quy luạt bién thiên, song sử dụng để tính toán sẽ không thuận tiện, vì thế ta đưa vào cách biểu diển bằng vectơ.

Từ biểu thức trị sơ tức thời dòng điẹn

$$
\mathrm{i}=\mathrm{I}_{\mathrm{max}} \sin \left(\omega \mathrm{t}+\Psi_{\mathrm{i}}\right)=\mathrm{I} \sqrt{2} \sin \left(\omega \mathrm{t}+\Psi_{\mathrm{i}}\right)
$$

Ta thấy khi tần sơ đã cho, nếa biết trị so hiệu dụng I và pha dầu Ψ_{i}, thì dòng điện i hoàn toàn xác định.

Từ toán học, vectơ được đặc trưng bởi đọ dài (đọ lớn, mô đun) và góc (acgumen), từ đơ ta có thể dùng vectơ để biểu diển dòng diẹn hình sin (hình 3.7) như sau :

Độ dải của vectơ biểu diển trị sớ hiệu dụng.
Góc của vectơ với trục ox biểu diễn góc pha đầu. Ta ký hiẹu nhu sau:

Vectơ dòng điẹn : $\overrightarrow{\mathrm{I}}=\mathrm{I} \angle \Psi_{\mathrm{i}}$
Vectơ diẹn áp: $\overline{\mathrm{U}}=\mathrm{U} \angle \psi_{u}$
Ví dụ 5 : Hãy biểu diễn dòng điện, điẹn áp bằng vectơ và chi ra góc lệch pha φ, cho biết

$$
\begin{aligned}
& \mathrm{i}=20 \sqrt{2} \sin \left(\omega \mathrm{t}-10^{\circ}\right) \quad \mathrm{A} \\
& \mathrm{u}=100 \sqrt{2} \sin \left(\omega \mathrm{t}+40^{\circ}\right) \quad V
\end{aligned}
$$

Hinh 3.7

Vectơ döng điẹn $\overline{\mathrm{I}}$

$$
\bar{I}=20 \angle-10^{\circ}
$$

Vectơ điẹn áp $\overline{\mathrm{U}}$

$$
\overline{\mathrm{U}}=100 \angle 40^{\circ}
$$

Chọn tỳ lệ xích cho dòng điẹn, và tỳ lệ xích cho điện áp, sau đớ biểu diễn chưng bẳng vectơ trên hình 3.8. Chú y goc pha dương, am được xác định theo quy ước trên hình 3.7.

Hinh 3.8

Góc lẹch pha φ gĩ̛̛a điện áp và dờng điẹn là góc giữa 2 vectơ \bar{U} và \vec{I}.
Phương pháp biêuu diễn veciơ giúp ta dể dàng cợng hoặc trừ các đại lượng dòng điẹn, điện áp xoay chiều hình sin.

Vf dụ 6: Tînh dòng diẹn i_{3} trong hình 3.9a. Cho biêt trị sóf tức thời $i_{1}=16 \sqrt{2} \sin \omega t ; i_{2}=12 \sqrt{2} \sin \left(\omega t+90^{\circ}\right)$.

Lời giải: Áp dụng định luạt Kiecshôp 1 tại nút ta có

$$
\mathrm{i}_{3}=\mathrm{i}_{1}+\mathrm{i}_{2}
$$

Hinh 3.9

Ta không cợng trực tiếp trị só tức thời đâ cho, mà biểu diên chúng thành vectơ (hinh 3.9b)

$$
\begin{aligned}
& \overrightarrow{\mathrm{I}}_{\mathrm{L}}=16 \angle 0^{0} \\
& \mathrm{I}_{2}=12 \angle 90^{0}
\end{aligned}
$$

Rôi tién hành cợng vectơ

$$
\overrightarrow{\mathrm{I}}=\overrightarrow{\mathrm{I}}_{1}+\overrightarrow{\mathrm{I}}_{2}
$$

Trị só hiẹu dụng của dòng điện I_{3} là:

$$
I_{3}=\sqrt{12^{2}+16^{2}}=20 \mathrm{~A}
$$

Góc pha của dòng diẹn i_{3} là:

$$
\operatorname{tg} \psi_{3}=\frac{12}{16}=0,75
$$

Góc $\Psi_{3}=36,87^{0}$
Biét được trị só hiệu dụng I và góc pha đầu Ψ_{i} ta xác định dẽ dàng trị sơ tức thời.
Trị sơ tức thời dòng diẹn i_{3}

$$
i_{3}=20 \sqrt{2} \sin \left(\omega t+36,87^{\circ}\right)
$$

Việc ứng dụng vectơ để biểu diễn các đại lượng và các quan hệ trong mạch điện cũng như để giải mạch điện sẽ được đề cạp trong các mục tiếp theo.

3.5. QUAN HỆ GIỪA DÒNG ĐIỆN, ĐIỆN ÁP CỦA MỘT NHÁNH

Nhánh là phấn tử cơ bản của mạch điẹn, vì thế trước hết ta phải xét các quan hệ trong nhánh.

1. Nhánh thuấn điện trở R

Khi có dòng điện $\mathrm{i}=\mathrm{I} \sqrt{2} \sin \omega \mathrm{t}$ chạy qua điện trở R (hình 3.10a), áp dụng định luật Ôm, điện áp trên điện trờ là :

$$
\mathrm{u}_{\mathrm{R}}=\mathrm{Ri}=\mathrm{RI} \sqrt{2} \sin \omega \mathrm{t}=\mathrm{U}_{\mathrm{R}} \sqrt{2} \sin \omega \mathrm{t}
$$

trong đơ U_{R} là trị sớ hiẹu dụng của điện áp trên điện trở R .
So sánh biểu thức của i và u_{R} ta thấy:

- Quan hệ giữa trị sơ hiẹ̣u dụng của điện áp và dòng điện (định luạt Ốm cho trị sớ hiệu dụng).

$$
\begin{equation*}
\mathrm{U}_{\mathrm{R}}=\mathrm{RI} \quad \text { hoặ } \quad \mathrm{I}=\frac{\mathrm{U}_{\mathrm{R}}}{\mathrm{R}} \tag{3-8}
\end{equation*}
$$

- Dòng điện và điện áp có cùng tần só và trùng pha nhau. Góc lệch pha giữa điện áp và dòng điện $\varphi=\Psi_{u}-\Psi_{i}=0$. Đồ thị vectơ dòng điẹn, diện áp vẽ trên hình 3.10 c .

Hinh 3.10
Ví dụ 7: Một bàn là điện có điện trờ $\mathrm{R}=48,4 \Omega$, đầu vào nguồn điện xoay chiều điện áp $U=220 \mathrm{~V}$. Tînh trị so dòng điện hiệu dụng I và công suất điện bàn là tiêu thụ. Vẽ đò thị vectơ dòng điẹn, điện áp.

Là̀ i giải:

Trị so hiẹu dưng cùa dòng diẹn

$$
\mathrm{I}=\frac{\mathrm{U}}{\mathrm{R}}=\frac{220}{48,4}=4,54 \mathrm{~A}
$$

Công suất điện bàn là tiêu thụ

$$
\mathrm{P}=\mathrm{RI}^{2}=48,4 \cdot 4,54^{2} \approx 1000 \mathrm{~W}
$$

Đó thị vectơ vẽ trên hình 3.11 trong đó dòng điện trùng pha điện áp.

2. Nhánh thuần điện cảm L

Ta xét một cuộn dây thuấn điện cảm L (coi điện trở R của cuộn dây bằng khong). Khi cho dòng điện xoay chiếu chạy qua cuộn dây, sẽ có từ thông biến thiên xuyên qua cuộn dây, trong cuộn dây sẽ cảm ứng sức điện động tự cảm e_{L} và giữa 2 cực của cuộn dây sẽ có điện áp cảm ứng u_{L} (hình 3.12a). $\quad u_{L}=\frac{L d i}{d t}$

Nếu dòng điện $\quad i=I \sqrt{2} \sin \omega t$ thì

$$
\begin{aligned}
u_{L} & =L \frac{d}{d t}(I \sqrt{2} \sin \omega t)=\omega L I \sqrt{2} \cos \omega t \\
& =\omega L I \sqrt{2} \sin \left(\omega t+\frac{\pi}{2}\right)=U_{L} \sqrt{2} \sin \left(\omega t+\frac{\pi}{2}\right)
\end{aligned}
$$

Hinh 3.12
So sánh biếu thức của i và u_{L} ta thấy :

- Quan hệ giữa trị số hiệu dụng của điện áp và dòng điẹn :

$$
\begin{equation*}
\mathrm{U}_{\mathrm{L}}=\omega \mathrm{LI} \quad \text { hoạc } \quad \mathrm{I}=\frac{\mathrm{U}_{\mathrm{L}}}{\omega \mathrm{~L}}=\frac{\mathrm{U}_{\mathrm{L}}}{\mathrm{X}_{\mathrm{L}}} \tag{3-9}
\end{equation*}
$$

Đai lượng $\omega \mathrm{L}$ có thứ nguyên của điẹn trở, được gọi là cảm kháng X_{L} có đơn vị là Ôm (Ω)

$$
\begin{equation*}
X_{L}=\omega L \tag{3-10}
\end{equation*}
$$

- Dòng điện i và điẹn áp $u_{\mathrm{L}} \mathrm{c} 6$ cùng tần $\mathrm{s} \delta$, song điẹn áp vượt trước dòng điẹn góc pha $\frac{\pi}{2}$ (hình 3.12b).

Đồ thị vectơ điện áp và dòng điện vẽ trên hình 3.12 c .
Ví dụ 8 : Một cuộn dây thuẩn điện càm $\mathrm{L}=0,015 \mathrm{H}$ đóng vào nguờn điện có điện áp u = $100 \sqrt{2} \sin \left(314 \mathrm{t}+\frac{\pi}{3}\right) \mathrm{V}$.

Tính trị só hiệu dụng I và gơc pha đâu dòng điẹn Ψ_{i}. Ve đổ thị vectơ dòng điẹn, điẹn áp.

Lài giải: Diện khăng của cuọn day

$$
X_{L}=\omega L=314 \cdot 0,015=4,71 \Omega
$$

Trị sơ hiệu dụng dòng điện

Hinh 3.13

Góc pha đàu dòng điện

$$
\psi_{i}=\psi_{u}-\frac{\pi}{2}=\frac{\pi}{3}-\frac{\pi}{2}=-\frac{\pi}{6}
$$

Trị sớ tức thời của dòng điện-

$$
i=21,23 \sqrt{2} \sin \left(314 t-\frac{\pi}{6}\right)
$$

Đồ thị vectơ dòng diẹ̣n, diện áp vẽ trên hình 3.13.

3. Nhánh thuần điện dung C

Khi ta đặt điện áp xoay chiều lên một tụ điện thuần điện dung C (hình 3.14a), điện áp trên tụ điện là u_{c}.

$$
u_{C}=U_{c} \sqrt{2} \sin \omega t
$$

Tự điện được nạp điện tích $\mathrm{dq}=\mathrm{Cdu}_{\mathrm{c}}$ và dòng điện chạy qua tụ điện là :

$$
\begin{aligned}
i= & \frac{d q}{d t}=\frac{C d u_{C}}{d t}=\frac{C d}{d t}\left(U_{C} \sqrt{2} \sin \omega t\right) \\
& =\omega C U_{C} \sqrt{2} \cos \omega t=I \sqrt{2} \sin \left(\omega t+\frac{\pi}{2}\right)
\end{aligned}
$$

So sánh biểu thức dòng điện và điện áp ta thấy :

- Quan hệ giữa trị só hiẹu dụng của dòng điẹn và điẹn áp là:

$$
\begin{equation*}
\mathrm{I}=\omega \mathrm{CU}_{\mathrm{C}}=\frac{\mathrm{U}_{\mathrm{C}}}{\frac{1}{\omega \mathrm{C}}}=\frac{\mathrm{U}_{\mathrm{C}}}{\mathrm{X}_{\mathrm{C}}} \tag{3-11a}
\end{equation*}
$$

hoạac

$$
\begin{align*}
& \mathrm{U}_{\mathrm{C}}=\mathrm{IX} \mathrm{X}_{\mathrm{C}} \tag{3-11b}\\
& \mathrm{X}_{\mathrm{C}}=\frac{1}{\omega \mathrm{C}} \tag{3-12}
\end{align*}
$$

Đại lượng $X_{C}=\frac{1}{\omega \mathrm{C}}$ có thứ nguyên của điện trở được gọi là dung kháng, đơn vị là Ôm (Ω).

Hinh 3.14

- Dòng điện và điẹn áp có cừng tần só, song điện áp u_{c} chậm sau dòng điện i một góc pha $\frac{\pi}{2}$ (hoặc dòng điện i vượt trước điện áp u_{c} mợt góc $\frac{\pi}{2}$) (hình 3.14b).

Đồ thị vectơ dòng điện và điện áp vẽ trên hình 3.14 c .
Ví dụ 9: Trị sơ tức thời của dòng điẹn chạy qua tụ điẹn có điẹn dung

$$
\mathrm{C}=2.10^{-3} \mathrm{~F} \mathrm{la} \quad \mathrm{i}=100 \sqrt{2} \sin \left(314 \mathrm{t}+\frac{\pi}{4}\right) \mathrm{A}
$$

Tính trị sơ hiẹu dụng và pha đâu của diẹn áp đạt lên tụ điện.

Lò̀ giải: Dung kháng của tụ điện.

$$
x_{C}=\frac{1}{\omega C}=\frac{1}{314.2 \cdot 10^{-3}}=1.59 \Omega
$$

Trị só hiẹu dụng điẹn áp trên tụ điẹn

$$
\mathrm{U}_{\mathrm{c}}=\mathrm{X}_{\mathrm{C}} \mathrm{I}=1,59 \cdot 100=159 \mathrm{~V}
$$

Gớc pha đầu cưa điện áp trên tụ điện là:

$$
\psi_{u}=\psi_{i}-\frac{\pi}{2}=\frac{\pi}{4}-\frac{\pi}{2}=-\frac{\pi}{4}
$$

Đồ thị vectơ đòng điện, điện áp vẽ trên hình

Hinh 3.15 3.15.

4. Nhánh điện trở, điện cảm, điện dung măc nối tiếp

Khi cho dòng điẹn $\mathrm{i}=\mathrm{I} \sqrt{2} \sin \omega t$ chạy trong nhánh có $\mathrm{L}, \mathrm{R}, \mathrm{C}$ mấc nới tiếp, sẽ gây ra điện áp rởi trên điện trở u_{R}, trên điện cảm u_{L}, trên điện dung u_{C} (hình 3.16a).

a)

b)

Hinh 3.16

Trị sớ tức thời của điẹn áp u ở hai đầu của nhánh là:

$$
\mathbf{u}=u_{R}+u_{L}+u_{v}
$$

Biểu diễn bằng vectơ ta c :

$$
\overrightarrow{\mathrm{U}}=\overrightarrow{\mathrm{U}}_{\mathrm{R}}+\overrightarrow{\mathrm{U}}_{\mathrm{L}}+\overrightarrow{\mathrm{U}}_{\mathrm{C}}
$$

Để vẽ đồ thị vectơ của mạch, trước hết ta vẽ vectơ dòng điện $\overline{1}$ trùng với trục ox (vì pha đầu của đòng điện đã̃ cho $\Psi_{i}=0$), sau đô, dựa vào các quan hệ vectơ trong các nhánh thuần R, L, C vẽ vectơ $\overrightarrow{\mathrm{U}}_{\mathrm{R}}$ cơ độ lớn $\mathrm{U}_{\mathrm{R}}=\mathrm{RI}$ và trùng pha với dơng điẹ̣n, vectơ $\overrightarrow{\mathrm{U}}_{\mathrm{L}}$ có độ lớn $\mathrm{U}_{\mathrm{L}}=\mathrm{X}_{\mathrm{L}} \mathrm{I}$ và vượt trước $\overrightarrow{\mathrm{I}}$ một góc 90°, vectơ $\overrightarrow{\mathrm{U}}_{\mathrm{C}}$ có đọ lớn $\mathrm{U}_{\mathrm{C}}=\mathrm{X}_{\mathrm{C}} \mathrm{I}$ và chậm sau $\overrightarrow{\mathrm{I}}$ một góc 90°. Tiến hành cộng hình học các vectơo $\overrightarrow{\mathrm{U}}_{\mathrm{R}}, \overrightarrow{\mathrm{U}}_{\mathrm{L}}, \overrightarrow{\mathrm{U}}_{\mathrm{C}}$ ta được vectơ $\overline{\mathrm{U}}$ (hình 3.16 b).

Từ tam giác vuông OMN ta có :
Trị sớ hiệu dụng của điện áp

$$
\begin{aligned}
\mathrm{U}=\mathrm{OM} & =\sqrt{\mathrm{U}_{\mathrm{R}}^{2}+\left(\mathrm{U}_{\mathrm{L}}-\mathrm{U}_{\mathrm{C}}\right)^{2}}=\sqrt{(\mathrm{RI})^{2}+\left(\mathrm{X}_{\mathrm{L}} \mathrm{I}-\mathrm{X}_{\mathrm{C}} \mathrm{I}\right)^{2}} \\
& =\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}} \cdot \mathrm{I}=\mathrm{ZI}
\end{aligned}
$$

Góc lệch pha giữa điện áp Ū và dòng điện \vec{I} là :

$$
\begin{aligned}
& \operatorname{tg} \varphi=\frac{U_{L}-U_{C}}{U_{R}}=\frac{\left(X_{L}-X_{C}\right) I}{R I}=\frac{X_{L}-X_{C}}{R} \\
& \varphi=\operatorname{arctg} \frac{X_{L}-X_{C}}{R}
\end{aligned}
$$

Ta có kết luạn sau :

- Quan hệ giữa trị só hiệu dụng của diện áp và dòng điện trong nhánh R, L, C nới tiép là:

Trong đó

$$
\begin{align*}
& \mathrm{U}=\mathrm{zI} \text { hoặc } \mathrm{I}=\frac{\mathrm{U}}{\mathrm{z}} \tag{3-13}\\
& \mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}} \tag{3-14}
\end{align*}
$$

gọi là tởng trở của nhánh $\mathrm{R}, \mathrm{L}, \mathrm{C}$ n夭̂i tiép.

$$
\mathrm{X}=\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}=\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}} \text { gọi là điện kháng }
$$

- Góc lệch pha φ giữa điện áp và dòng điẹn là :

$$
\begin{equation*}
\varphi=\operatorname{arctg} \frac{X_{L}-X_{C}}{R} \tag{3-15}
\end{equation*}
$$

Khi $X_{L}>X_{C}$ nhánh có tính cảm, $\varphi>0$, điện áp vượt trước đòng điện.

Khi $X_{L}<X_{C}$ nhánh có tính dung, $\varphi<0$, điẹn áp chậm sau đòng điẹn.

Khi $X_{L}=X_{C}, X=X_{L}-X_{C}=0, \varphi=0$, điẹn áp trùng pha với dòng điện, nhánh R, L, C lúc này cơ hiện tượng cộng hưởng nơi tiếp, hiệu dưng điện áp $\mathrm{U}_{\mathrm{L}}, \mathrm{U}_{\mathrm{c}}$ lớn hơn điện áp U rất nhiều.

Hinh 3.17

Điều kiện để cợng hưởng nới tiếp là :

$$
\omega \mathrm{L}=\frac{1}{\omega \mathrm{C}}
$$

Tân so góc cọ̣ng hưởng lă

$$
\omega=\sqrt{\frac{1}{\mathrm{LC}}}
$$

Ví dụ 10: Cho mạch điẹn co $\mathrm{R}, \mathrm{L}, \mathrm{C}$ nơi tiếp (hình 3.18a), biết điẹn áp đầu cực của nguòn $u=10 \sqrt{2} \sin \omega t$.

Tónh dòng điẹn I và điẹn áp tren các phần tử $\mathrm{U}_{\mathrm{R}}, \mathrm{U}_{\mathrm{L}}, \mathrm{U}_{\mathrm{C}}$. Vẽ đồ thị vectơ mạch diẹn.

Lời giải: Tởng trở của mạch điẹn cor R, L, C nơi tiép

$$
\mathrm{z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}=\sqrt{75^{2}+(25-60)^{2}}=82,8 \Omega
$$

Dòng điện I chạy trong mạch

$$
1=\frac{U}{2}=\frac{10}{82,8}=0,121 \mathrm{~A}
$$

Điẹn áp trên các phấn tử

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{R}}=\mathrm{RI}=75 \cdot 0,121=9,08 \mathrm{~V} \\
& \mathrm{U}_{\mathrm{L}}=\mathrm{X}_{\mathrm{L}} \mathrm{I}=25 \cdot 0,121=3,03 \mathrm{~V} \\
& \mathrm{U}_{\mathrm{c}}=\mathrm{X}_{\mathrm{C}} \mathrm{I}=60 \cdot 0,121=7,27 \mathrm{~V}
\end{aligned}
$$

Góc lệch pha giữa điện áp và dòng điẹn:

$$
\operatorname{tg} \varphi=\frac{X_{L}-X_{C}}{R}=\frac{25-60}{75}=-0,466
$$

$\varphi=-25^{\circ}$
$\varphi<0$ cho ta biết dòng điẹn vượt trước điện áp.
Đẻ̉ vẽ đớ thị vectơ (hình 3.18b), trước hết vẽ vectơ diện áp trùng với trục ox ($\Psi_{u}=0$) sau đó vẽ vectơ dòng điẹn \bar{I} vượt trước điẹn áp Ũ mọt góc 25°. Vectơ \bar{U}_{R} trùng pha với $\overrightarrow{\mathrm{I}}$, vectơ $\overrightarrow{\mathrm{U}}_{\mathrm{L}}$ vượt trước $\overrightarrow{\mathrm{I}}$ một góc 90°, vectơ $\overline{\mathrm{U}}_{\mathrm{C}}$ chậm sau dòng điẹn $\overline{\mathrm{I}}$ một goc 90°. Chú $\mathrm{y}: \overline{\mathrm{U}}=\overline{\mathrm{U}}_{\mathrm{R}}+\overline{\mathrm{U}}_{\mathrm{L}}+\overline{\mathrm{U}}_{\mathrm{C}}$

Ví dụ 11: Mọt mạch điẹn R, L, C nới tiếp (hình 3.19)

Điẹn áp đấu cực của nguồn $\mathrm{U}=20 \mathrm{~V}$, tính döng điẹn trong mạch khi tản so $\mathrm{f}=1 \mathrm{kHz}$ và $\mathrm{f}=2 \mathrm{kHz}$.

Lài giài:

a) $\mathrm{Khif}=1 \mathrm{kHz}$

$$
\begin{aligned}
& X_{L}=2 \pi \mathrm{fL}=2 \pi \cdot 10^{3} \cdot 100 \cdot 10^{-3}=628 \Omega \\
& X_{C}=\frac{1}{2 \pi \mathrm{fc}}=\frac{1}{2 \pi \cdot 10^{3} \cdot 2 \cdot 10^{-8}}=7960 \Omega
\end{aligned}
$$

Hinh 3.19

$$
\mathrm{z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}=\sqrt{3300^{2}+(628-7960)^{2}}=8040 \Omega
$$

$$
I=\frac{U}{z}=\frac{20}{8,04 \cdot 10^{3}}=2,48 \cdot 10^{-3} \mathrm{~A} .
$$

b) $\mathrm{Khi} \mathrm{f}=2 \mathrm{kHz}$

$$
\mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL}=2 \pi \cdot 2 \cdot 10^{3} \cdot 100 \cdot 10^{-3}=1260 \Omega .
$$

$$
\begin{aligned}
& X_{C}=\frac{I}{2 \pi f \mathrm{f}}=\frac{1}{2 \pi \cdot 2 \cdot 10^{3} \cdot 2 \cdot 10^{-8}}=3980 \Omega \\
& \mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-X_{C}\right)^{2}}=\sqrt{3300^{2}+(1260-3980)^{2}}=4280 \Omega \\
& I=\frac{U}{z}=\frac{20}{4,28 \cdot 10^{3}}=4,67 \cdot 10^{-3} \mathrm{~A}
\end{aligned}
$$

Ví dụ 12: Cho mạch điện R, L, C nối tiếp (hình 3.20a). Điện áp nguồn $\mathrm{U}=200 \mathrm{~V} ; \mathrm{f}=50 \mathrm{~Hz}$. Xác định C đé mạch có cọng hưởng nôi tiếp. Tính dòng điẹn I và điện áp trên các phân tử $\mathrm{U}_{\mathrm{R}}, \mathrm{U}_{\mathrm{L}}, \mathrm{U}_{\mathrm{C}}$.

Lời giái : Để có cợng hưởng nơi tiếp thì

a) $\operatorname{Hinh} 3.20$

Điện dung \mathbf{C} của mạch điện

b)

$$
\mathrm{C}=\frac{1}{2 \pi f \mathrm{X}_{\mathrm{C}}}=\frac{1}{2 \pi .50 .500}=6,37.10^{-6} \mathrm{~F}
$$

Dòng điện khi cộng hưởng

$$
I=\frac{U}{R}=\frac{200}{100}=2 \mathrm{~A} .
$$

Điện áp trên điẹn trở bằng điệñ áp nguôn

$$
\mathrm{U}_{\mathrm{R}}=\mathrm{U}=200 \mathrm{~V}
$$

Điện áp trên diện cảm

$$
\mathrm{U}_{\mathrm{L}}=\mathrm{X}_{\mathrm{L}} \mathrm{I}=500.2=1000 \mathrm{~V}
$$

Diẹn áp trên diẹn dung

$$
\mathrm{U}_{\mathrm{c}}=\mathrm{X}_{\mathrm{c}} \mathrm{I}=500: 2=1000 \mathrm{~V}
$$

Điện áp $\mathrm{U}_{\mathrm{L}}, \mathrm{U}_{\mathrm{c}}$ lớn hơn diện áp nguồn rất nhiều.
Đờ thị vectơ của mạch điện khi cợng hưởng vê trên hình 3.20b
Ví dụ 13 : Mạch điện co R, L nới tiếp (hình 3.21a). Biết dòng diện $\mathrm{I}=0,2 \mathrm{~mA}$, tần so đòng diện $\mathrm{f}=10 \mathrm{kHz}$.
a) Xác dịnh diện áp U, U_{R}, U_{L} và vẽ đồ thị vectơ của mạch.
b) Thay L bằng C , cho biết dòng diện I có trị số không đởi. Xác định C và vẽ đó thị vectơ trong trương hợp này.

Lơi giải:

a) Mạch RL nố tiếp :

$$
\begin{aligned}
& X_{L}=2 \pi f L=2 \pi \cdot 10 \cdot 10^{3} \cdot 100 \cdot 10^{-3}=6280 \Omega \\
& z=\sqrt{R^{2}+X_{L}^{2}}=\sqrt{10000^{2}+6280^{2}}=11800 \Omega \\
& U=z I=11,8 \cdot 10^{3} \cdot 0,2 \cdot 10^{-3}=2,36 \mathrm{~V} \\
& U_{L}=X_{L} I=6,28 \cdot 10^{3} \cdot 0,2 \cdot 10^{-3}=1,256 \mathrm{~V} \\
& U_{R}=R I=10 \cdot 10^{3} \cdot 0,2 \cdot 10^{-3}=2 \mathrm{~V}
\end{aligned}
$$

Đơ thị vectơ của mạch điện R, L vẽ trên hình 3.21 b .
b) Mạch RC nói tiếp :

Vi I khơng đö̉i, nên tởng trở z khơng đời. Từ biểu thức $z=\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{C}}^{2}}$ ta có:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{C}}=\sqrt{\mathrm{z}^{2}-\mathrm{R}^{2}}=\sqrt{11800^{2}-10000^{2}}=6280 \Omega \\
& \mathrm{C}=\frac{1}{2 \pi \mathrm{X}_{\mathrm{C}}}=\frac{1}{2 \pi \cdot 10 \cdot 10^{3} \cdot 6,28 \cdot 10^{3}}=2,53 \cdot 10^{-9} \mathrm{~F}
\end{aligned}
$$

Đơ thị vectơ của mạch điện R, C vê trên hình 3.21 c .

Hinh 3.21

3.6. CÔNG SUẤT CỦA DÒNG ĐIẸN HÌNH SIN

Trong mạch điện xoay chiều R, L, C nới tiếp có 2 quá trình năng lượng sau:

- Quá trình tiêu thụ điện nãng và biến đổi sang dạng năng lượng khác (tiêu tán, không còn tồn tại trong mạch điện). Thông só đặc trưng cho quá trình này là điẹn trở R.
- Quá trình trao đói, tích luỹ năng lượng điện từ trường trong mach. Thông số đặc trưng cho quá trình này là điện cảm L và điện dung C .

Tương ưng với 2 quá trình ấy, người ta dưa ra khái niệm công suất tác dụng P và cong suấ phản kháng Q.

1. Công suất tác dụng P

Công suất tác dụng P là công suất điện trở R tiêu thụ, đặc trưng cho quá trình biến đởi điện năng sang dạng năng lượng khác như nhiệt năng, quang năng,...

$$
\begin{equation*}
\mathbf{P}=\mathrm{RI}^{2} \tag{3-16}
\end{equation*}
$$

Từ đờ thị vectơ hình $\mathbf{3 . 1 6 b}$

$$
\mathrm{U}_{\mathrm{R}}=\mathrm{RI}=\mathrm{U} \cos \varphi
$$

Thay vào (3-16) ta có

$$
\begin{equation*}
\mathrm{P}=\mathrm{RI}^{2}=\mathrm{U}_{\mathrm{R}} \mathrm{I}=\mathrm{UI} \cos \varphi \tag{3-17}
\end{equation*}
$$

Công suất tác dụng là công suất trung bình trong một chu kỳ.

2. Công suát phản kháng Q

Để đặc trưng cho cường độ quá trình trao đổi, tích luŷ nảng lượng điện từ trường, người ta đưa ra khái niệm công suắt phản kháng Q .

$$
\begin{equation*}
\mathrm{Q}=\mathrm{XI}^{2}=\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) \mathrm{I}^{2} \tag{3-18}
\end{equation*}
$$

Từ đồ thị vectơ hình 3.16b

$$
\mathbf{U}_{\mathbf{X}}=\mathrm{XI}=\mathbf{U} \sin \varphi
$$

Thay vào (3-18) ta có

$$
\begin{equation*}
\mathrm{Q}=\mathrm{XI}^{2}=\mathrm{U}_{\mathbf{X}} \mathrm{I}=\mathrm{U} \sin \varphi \tag{3-19}
\end{equation*}
$$

Nhìn vào (3-18) thấy rõ công suất phản kháng của mạch gồm:
Công suất phản kháng của điện cám Q_{L}

$$
\begin{equation*}
\mathbf{Q}_{\mathrm{L}}=\mathrm{X}_{\mathrm{L}} \mathbf{I}^{2} \tag{3-20}
\end{equation*}
$$

Công suất phản kháng của điẹn dung Q_{C}

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{C}}=-\mathrm{X}_{\mathrm{C}} \mathrm{I}^{2} \tag{3-21}
\end{equation*}
$$

3. Công suát biểu kiến S

Để đặc trưng cho khả năng của thiết bị và nguồn thực hiện 2 quá trình năng lượng xét ở trên, người ta đưa ra khái niệm công suất biểu kiến S được định nghĩa như sau:

$$
\begin{equation*}
\mathrm{S}=\mathrm{UI}=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}} \tag{3-22}
\end{equation*}
$$

Biểu thức của P, Q có thể viết theo S như sau:

$$
\begin{aligned}
& \mathrm{P}=\mathrm{UI} \cos \varphi=\mathrm{S} \cos \varphi \\
& \mathrm{Q}=\mathrm{UI} \sin \varphi=\mathrm{S} \sin \varphi
\end{aligned}
$$

Từ 2 công thức này thấy rõ, cực đại của công suất tác dụng $P(k h i \cos \varphi=1)$, cực đại của công suất phản kháng $\mathrm{Q}(\mathrm{khi} \sin \varphi=1$) là công suất biếu kiến S. Vậy S nói lên khả năng của thiết bị. Trên nhãn của máy phát điện, máy biến áp, người ta ghi công suất biểu kiến S định mức.

Quan hệ giữa P, Q, S được mô tả bằng một tam giác vuông (hình 3.22) trong đó S là cạnh huyền, P, Q là 2 cạnh góc vuông.

Hinh 3.22
$\mathrm{P}, \mathrm{Q}, \mathrm{S}$ có cùng thứ nguyên, song để phân biẹt ta cho các đơn vị khác nhau:

Đon vị của P: W, kW, MW
Đơn vị của Q: VAr, kVAr, MVAr
Đơn vị 'của S: VA, kVA, MVA

4. Đo công suất tác dụng P

Để đo công suất tác dụng P , người ta thường dùng oát kế kiểu điện động (hình 3.23).

Oát kế điện động gồm 2 cuộn dây, cuộn dòng điẹn (có tiết diẹ̀n lơn) ở phần tïnh, mắc nới tiép với tải, cuộn điện áp (tiết diện nhỏ, nhiều vòng dây) ở phần động, mấc song song với điện áp tải, co dòng điện $\mathrm{i}_{\mathrm{V}}=\frac{\mathrm{u}}{\mathrm{R}_{\mathrm{V}}}$. Lực điẹn từ tác dụng vào phần động tỷ lệ với tích hai dòng điện i và i_{v} nghĩa là tỷ lệ với $p=u i$, do đó mó men quay trung bình cua

Hinh 3.23 dụng cụ sẽ tỷ lệ với công suất tác dụng P.

Khi sử dụng oát kế cần chư ý nơi đưng cực tính của cuộn dây (đâu đánh 'dấu *).

3.7. NÂNG CAO HẸ SÓ́ CÔNG SUẤT $\operatorname{COS} \varphi$

Trong biếu thức công suất tác dụng $\mathrm{P}=\mathrm{UI} \cos \varphi, \cos \varphi$ được coi là hệ só công suất.

Hẹ sơ công suất phụ thuộc vào thông số của mạch điện. Trong nhánh R, L, C nói tiép

$$
\cos \varphi=\frac{\mathrm{R}}{\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}}
$$

hoặ

$$
\cos \varphi=\frac{\mathbf{P}}{\sqrt{\mathbf{P}^{2}+\mathbf{Q}^{2}}}
$$

Hệ sớ công suát là chỉ tiêu kỹ thuật quan trọng, co ý nghĩa rất lớn vể kinh tê như sau:

- Nang cao hệ só công suất sẽ tạn dụng tớt cơng suất nguồn (máy phát điện, máy biến áp,...) cung cấp cho tải. Ví dụ một máy phát điện có công suất định mức $\mathrm{S}_{\mathrm{dm}}=10000 \mathrm{kVA}$, nếu hẹ sơ công suất của tải $\cos \varphi=0,5$, công suất tác dụng của máy phát cho tải $\mathrm{P}=\mathrm{S}_{\mathrm{dm}} \cos \varphi=10000 \cdot 0,5=5000 \mathrm{~kW}$. Nêu $\cos \varphi=0,9$ thì $P=10000.0,9=9000 \mathrm{~kW}$. Rõ ràng là khi $\cos \varphi$ cao máy phát ra nhiếu công suât hơn.
- Khi cần truyền tải một cong suất P nhất định trên đường dây, thì dòng điện chạy trên đường dây là:

$$
I=\frac{P}{U \cos \varphi}
$$

Nếu $\cos \varphi$ cao thì dòng điện I sẽ̃ giảm, dả̉n đên giảm tởn hao điện năng, giảm điện áp rơi trên đường dây và co thể chọn day dẫn tiết diện nhỏ hơn.

Các tải trong công nghiệp và sinh hoạt thường có tính điện cảm (cuộn dây động cơ điẹn, máy biên âp, chấn lưu...) nên $\cos \varphi$ thấp. Để nâng cao $\cos \varphi$ ta thường dùng tụ điện nới song song với tải (hình 3.24a).

Hinh 3.24

Khi chưa bù (chưa có nhánh tụ điện), dòng điện chạy trên đưỡng dây bằng I_{1}, hệ sớ cồng suất của mạch (của tải) là $\cos \varphi_{1}$

Khi có bù (có nhánh tụ điẹn), dòng điẹn chạy trên đường dây I là:

$$
\overrightarrow{\mathrm{I}}=\overrightarrow{\mathrm{I}}_{1}+\overrightarrow{\mathrm{I}}_{\mathrm{C}}
$$

Và hệ só cong suất của mạch là $\cos \varphi \varphi$.
Từ đồ thị hình 3.24 b ta thấy

$$
\mathrm{I}<\mathrm{I}_{1} ; \varphi<\varphi_{1} \text { và } \cos \varphi>\cos \varphi_{1}
$$

Như vậy hệ số công suất $\cos \varphi$ đã được nâng cao.
Điện dung C cần thiết để nâng hệ só công suất từ $\cos \varphi_{1}$ lên $\cos \varphi$ được tính nhu sau:

Vì công suất tác 'dụng của tải không dổi nên công suất phản kháng của mạch là:

Khi chưa bù :

$$
\mathrm{Q}_{1}=\operatorname{Ptg} \varphi_{1}
$$

Khi cơ bù bằng tụ điện (tụ điẹn cung cấp Q_{c})

$$
\mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{\mathrm{C}}=\operatorname{Ptg} \varphi_{1}+\mathrm{Q}_{\mathrm{C}}=\operatorname{Ptg} \varphi
$$

Từ đó rút ra công suất Q_{C} của tụ điẹn là:

$$
\begin{equation*}
Q_{C}=-P\left(\operatorname{tg} \varphi_{1}-\operatorname{tg} \varphi\right) \tag{3-23}
\end{equation*}
$$

Mặt khác cơng suất Q_{c} của tụ điện được tính là :

$$
\begin{equation*}
Q_{C}=-U_{\mathbf{c}} I_{c}=-U \cdot U \cdot \omega C=-U^{2} \omega C \tag{3-24}
\end{equation*}
$$

So sánh (3-23) và (3-24) ta tính được điện dung C của bọ tụ điện là:

$$
\begin{equation*}
C=\frac{P}{\omega U^{2}}\left(\operatorname{tg} \varphi_{1}-\operatorname{tg} \varphi\right) \tag{3-25}
\end{equation*}
$$

Ví dụ 14: Mộ tải gơm $\mathrm{R}=6 \Omega, \mathrm{X}_{\mathrm{L}}=8 \Omega$ mắc n K_{i} tiếp, đấu vào nguồn $U=220 \mathrm{~V}$ (hình 3.25).
a) Tính dòng diẹn I_{1}, cong suất P, Q, S và $\cos \varphi_{1}$ của tải.
b) Người ta nâng hẹ sơ cong suất của mạch diện đạt $\cos \varphi=0,93$.

Tính diẹn dung C của bọ tụ điẹn đấu song song với tải.

Hinh 3.25

Lời giạì: Tởng trở tải

$$
\begin{aligned}
& z=\sqrt{R^{2}+X_{L}^{2}}=\sqrt{6^{2}+8^{2}}=10 \Omega \\
& \cos \varphi_{1}=\frac{R}{z}=\frac{6}{10}=0,6
\end{aligned}
$$

Dòng điện tải I_{1}

$$
\mathrm{I}_{1}=\frac{\mathrm{U}}{\mathrm{Z}}=\frac{220}{10}=22 \mathrm{~A}
$$

Cong suấ P của tài:

$$
\mathrm{P}=\mathrm{RI}_{1}^{2}=6.22^{2}=2904 \mathrm{~W}
$$

Co thê tính $\mathrm{P}=\mathrm{UI}_{1} \cos \varphi_{1}=220.22 \cdot 0,6=2904 \mathrm{~W}$
Cong suăt Q của tải.

$$
Q=X_{L} I_{l}^{2}=8.22^{2}=3872 \mathrm{VAr}
$$

Có thé tính:

$$
\mathrm{Q}=\mathrm{U}_{1} \sin \varphi_{\mathrm{l}}=220 \cdot 22 \cdot 0,8=3872 \mathrm{VAr}
$$

Tính C

$$
\begin{aligned}
& \cos \varphi_{1}=0,6 ; \operatorname{tg} \varphi_{1}=1,333 \\
& \cos \varphi=0,93 ; \operatorname{tg} \varphi=0,395
\end{aligned}
$$

Bọ tụ cần cơ diện dung là

$$
\mathrm{C}=\frac{\mathrm{P}}{\omega \mathrm{U}^{2}}\left(\operatorname{tg} \varphi_{1}-\operatorname{tg} \varphi\right)=\frac{2904}{314.220^{2}}(1,333-0,395)=1,792 \cdot 10^{-4} \mathrm{~F}
$$

3.8. BIÊU DIỄN DÒNG ĐIỆN HÌNH SIN BÀNG SÓ́ PHƯCC

1. Cách blểu điễn sớ phức

Trong mặt phẳng toạ đọ phức, s δ phức được biểu diển dưới 2 đạng sau (hình 3.26).
a) Dang $a \mathfrak{a i}$ só́

$$
\dot{\mathrm{C}}=\mathrm{a}+\mathrm{jb}
$$

Trong đó a là phấn thực; jb là phần ảo.
$\mathrm{j}=\sqrt{-1}$ là đơn vị ảo (trong toán học đơn vị ảo ký hiệu là i , ở đây để khỏi nhầm lã̃n với

Hinh 3.26 dờng điẹn i , ta ký hiệu là j).

b) Dang mũ

$$
\dot{\mathrm{C}}=\mathrm{Ce}^{\mathrm{J} \alpha}=\mathrm{C} \angle \alpha
$$

Trong đó : C là mo đun (đọ lớn) α là acgumen (góc)

$$
\begin{aligned}
& \dot{\mathrm{C}}=\mathrm{Ce}^{\mathrm{j} \alpha}=\mathrm{C} \angle \alpha=\mathrm{a}+\mathrm{jb} \\
& \mathrm{a}=\mathrm{C} \cos \alpha ; \mathrm{b}=\mathrm{C} \sin \alpha
\end{aligned}
$$

d) Đối từ dạng âai só sang dang mũ

$$
a+j b=C e^{j \alpha}
$$

trong đó:

$$
C=\sqrt{a^{2}+b^{2}} ; \quad \alpha=\operatorname{arctg} \frac{b}{a}
$$

Việc đởi này thực hiện dễ đàng trên máy tính.

2. Một số phép tính đối với số phức

a) Cộng, trừ

Gạ̣p trường hợp phải cộng (trừ) sớ phức, ta biến đỏi chúng về dạng đại s o, rồi cộng (trừ) phân thực với phấn thực, phẩn ảo với phần ảo.

$$
\begin{aligned}
& (4+j 2)+(3+j 1)=(4+3)+j(2+1)=7+j 3 \\
& (4+j 2)-(3+j 1)=(4-3)+j(2-1)=1+j 1
\end{aligned}
$$

b) Nhân, chia

Khi phải nhan, chia, ta nên đưa về dạng mũ: Nhan (chia) hai só phức, ta nhân (chia) mơuun còn acgumen (góc) thì cợng (trừ) cho nhau.

$$
\begin{gathered}
6 \mathrm{e}^{\mathrm{j} 20^{\circ}} \cdot 2 \mathrm{e}^{\mathrm{j} 10^{\circ}}=6.2 \mathrm{e}^{\mathrm{j}\left(20^{\circ}+10^{\circ}\right)}=12 \mathrm{e}^{\mathrm{j} 30^{\circ}} \\
\frac{6 \mathrm{e}^{\mathrm{j} 20^{\circ}}}{2 \mathrm{e} 10^{\circ}}=\frac{6}{2} \mathrm{e}^{\mathrm{j}\left(20^{\circ}-10^{\circ}\right)}=3 \mathrm{e}^{\mathrm{j} 10^{\mathrm{o}}}
\end{gathered}
$$

Nhan cũng có thể thực hiện dưới dạng đại số như bình thường

$$
\begin{aligned}
(a+j b)(c+j d) & =a c+j b c+j a d+j^{2} b d \\
& =(a c-b d)+j(b c+a d)
\end{aligned}
$$

vì $j^{2}=-1$

Khi chia ta nhan tử s ó và mẫu sơ với số phức lièn hợp của mẫu só.

$$
\frac{a+j b}{c+j d}=\frac{(a+j b)(c-j d)}{(c+j d)(c-j d)}=\frac{(a c+b d)+j(b c-a d)}{c^{2}+d^{2}}
$$

3. Biểu diễn các đại lượng điện hình sin bằng số phức

Cách biểu diển các đại lượng điẹn hình sin bằng só phức nhự sau: mơưn (đọ lớn) của sơ phức là trị sơ hiệu dụng ; acgumen (goc) của só phức là pha ban đấu.

Dòng điện phức : $\quad \dot{\mathrm{I}}=\mathrm{I} \angle \varphi_{\mathrm{i}}=\mathrm{I} \mathrm{e}^{\mathrm{j} \psi \mathrm{i}}$
Điẹn áp phức: $\quad \dot{\mathrm{U}}=\mathrm{U} \angle \psi_{u}=\mathrm{Ue}^{\mathrm{j} \psi u}$
Tởng trở phức của nhánh R, X_{L}, X_{C} nơi tiếp

$$
Z=z e^{j \varphi}=z \cos \varphi+j z \sin \varphi=R+j\left(X_{L}-X_{C}\right)
$$

Trong do : $z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$

$$
\varphi=\operatorname{arctg} \frac{X_{L}-X_{C}}{R}
$$

4. Viết các định luạt dượi dạng số phức
a) \#inh luat \boldsymbol{O}_{m}

$$
\dot{I}=\frac{T}{Z}
$$

b) Định luạt Kiécshop I cho mọt nút

$$
\sum_{\text {nút }} \stackrel{\bullet}{\mathrm{I}}=0
$$

c) Dịh' luát Kiécshop 2 cho mạch vong kin

$$
\sum_{\text {mạch vòng }} \mathrm{Z} \dot{\mathrm{I}}=\sum_{\text {mach vòng }} \dot{\mathrm{E}}
$$

Các quy ước về dấu tương tự như đã làm ở mạch điẹn một chiều, điều chú ý ở đây là các đại lượng phải viết dưới dạng só phức.

Ví dụ 15: Tính dòng diẹn i_{3} trên hình 3.27. Cho biết :

$$
\begin{aligned}
& \mathrm{i}_{1}=5 \sqrt{2} \sin \left(\omega \mathrm{t}+40^{\circ}\right) \mathrm{A} \\
& \mathrm{i}_{2}=10 \sqrt{2} \sin \left(\omega \mathrm{t}-30^{\circ}\right) \mathrm{A}
\end{aligned}
$$

Lời giải : Biểu diễn các dòng điện bằng sớ phức

$$
\begin{aligned}
& I_{1}=5 e^{j 40^{\circ}}=5 \cos 40^{\circ}+j 5 \sin 40^{\circ}=3,83+j 3,21 \\
& I_{2}=10 e^{-j 30^{\circ}}=10 \cos \left(-30^{\circ}\right)+j \sin \left(-30^{\circ}\right)=8,66-j 5
\end{aligned}
$$

Áp dụng dịnh luạt Kiecshop 1 tại nút:

$$
\dot{I_{3}}=\cdot \dot{I_{1}}+\dot{I}_{2}=3,83+j 3,21+8,66-j 5=12,49-j 1,79=12,61 e^{-j 8.15^{\circ}}
$$

Vây trị só hiệu dụng và pha đâuu của dòng điện i_{3} là

$$
\begin{aligned}
& I_{3}=12,61 \mathrm{~A} \\
& \Psi_{3}=-8,15^{0}
\end{aligned}
$$

Trị so tức thời

$$
\mathrm{i}_{3}=12,61 \cdot \sqrt{2} \sin \left(\omega t-8,15^{\circ}\right)
$$

Hinh 3.27

'Ví dụ 16: Môt mạch điện gồm $\mathrm{R}=$ $10 \Omega ; X_{\mathrm{L}}=16 \Omega ; \mathrm{X}_{\mathrm{c}}=11 \Omega$ nбi tiếp. Điẹn áp nguò̀n $\mathrm{u}=200 \sqrt{2} \sin \left(\omega t+50^{\circ}\right)$. Tín dòng điẹn trong mạch.

Lời giải: Tởng trở phức của mạch

$$
\begin{aligned}
Z & =R+j\left(X_{L}-X_{c}\right)=10+j(16-11) \\
& =10+j 5=11,18 \angle 26,56^{0}
\end{aligned}
$$

Điện áp phức cụ̉a nguồn

$$
\dot{\mathrm{U}}=200 \angle 50^{\circ}
$$

Áp dụng định luật Ốm

$$
\dot{I}=\frac{\stackrel{U}{Z}}{Z}=\frac{200 \angle 50^{\circ}}{11,18 \angle 26,56}=17,88 \angle 23,44^{\circ}
$$

Trị so hiệu dụng và góc pha đấu của dòng điện là:

$$
\begin{aligned}
& \mathrm{I}=17,88 \mathrm{~A} \\
& \Psi \mathrm{i}=23,44^{\circ}
\end{aligned}
$$

Trị số tức thời của dòng diẹn là:

$$
i=17,88 \sqrt{2} \sin \left(\omega t+23,44^{0}\right)
$$

3.9. PHƯONG PHÁP GIẢI MẠCH ĐIỆN XOAY CHIÊU HìNH SIN

Để giải mạch điện xoay chiều ta thường dùng các phương pháp sau.

1. Phương pháp đồ thị vectơ

Nội dung của phương pháp này là biểu diển dòng điện, điẹn áp, sức điện đợng bằng vectơ, viết các định luạt dưới dạng vectơ và thực hiẹn tính toán trên đồ thị vecto.

2. Phương pháp số phức

Biểu diễn dòng điện, điện áp, sửc điện động, tởng trở bằng số phức, viết các định luạt dưới dạng só phức. Đối với mạch điện phức tạp, sử dụng các phương pháp đã học ở chương mạch điẹn một chiều để giải như phương pháp biên đởi tương đương, phương pháp dòng điẹn nhánh, phương pháp dòng điẹn mạch vòng, phương pháp điện áp các nút, phương pháp xép chồng... Cản chú ý rằng, khi sử dụng các phương pháp này phải biểu diễn các đại lượng bằng sớ phức.

Đới với các mạch điện đơn giản, nhiểu khi ta trực tiếp sử dụng định luật Ôm và phương pháp công suất để giải mạch điẹn.

Ví dụ 17: Cho mạch điẹn hình 3.28a. Hãy tŕnh dòng điẹn các nhánh, công suất P, Q, S và $\cos \varphi$ của mạch điẹn.

Lở giải: Đẻ̉ hệ thơng lại kiến thức ta giải mạch điện bẳng các phương pháp khác nhau.

Hinh 3.28
a) Phtơng pháp đó thi vecto

Dòng diẹn trong các nhánh

$$
I_{R}=\frac{U}{R}=\frac{100}{10}=10 \mathrm{~A}
$$

$$
\begin{aligned}
& I_{L}=\frac{U}{X_{L}}=\frac{100}{5}=20 \mathrm{~A} \\
& I_{C}=\frac{U}{X_{C}}=\frac{100}{10}=10 \mathrm{~A}
\end{aligned}
$$

Vẽ đơ thị vectơ của mạch điện trẹn hình 3.28 b. Chọn pha đîu của điẹn áp $\Psi_{u}=0$, vectơ \vec{U} trùng vơi trục ox vé vectơ dòng diẹn \vec{I}_{R} trùng pha vơi vectơ diện áp $\overline{\mathrm{U}}$, vectơ dòng điẹn $\overrightarrow{\mathrm{I}}_{\mathrm{L}}$ chạ̣m sau vectơ điẹn áp $\overrightarrow{\mathrm{U}}$ mọt góc 90°, vectơ dòñg điẹn I_{C} vượt trước vectơ điẹn áp U mọt goc 90°.

Áp dụng định luạt Kiêcshop 1 tại nút A ta co:

$$
\overrightarrow{\mathrm{I}}=\overrightarrow{\mathrm{I}}_{\mathrm{R}}+\overrightarrow{\mathrm{l}}_{\mathrm{L}}+\overrightarrow{\mathrm{I}}_{\mathrm{C}}
$$

Trực tiép cọ̣ng vectơ tren đờ thị ta có $\overrightarrow{\mathbf{I}}$ ò mạch chính.
Trị so hiẹu dụng $\mathrm{I}=\sqrt{10^{2}+10^{2}}=14,14 \mathrm{~A}$.
Cong suát tác dụng P của mạch

$$
P=R I_{R}^{2}=10.10^{2}=1000 \mathrm{~W} .
$$

Cong suât phản kháng Q của mạch

$$
Q=Q_{L}+Q_{C}=X_{L} I_{L}^{2}-X_{C} I_{C}^{2}=5.20^{2}-10.10^{2}=1000 \mathrm{VAr}
$$

Cong suắt biếu kién của mạch:

$$
S=\sqrt{P^{2}+Q^{2}}=\sqrt{1000^{2}+1000^{2}}=1414 \mathrm{VA} .
$$

Hệ sơ cơng suât $\cos \varphi$ của mạch:

$$
\cos \varphi=\frac{P}{S}=\frac{1000}{1414}=0,707 .
$$

Ta cũng có thé tính $\mathrm{P}, \mathrm{Q}, \mathrm{S}$ như sau:

$$
\begin{aligned}
& \mathrm{P}=\mathrm{UI} \cos \varphi=100 \cdot 14,14 \cos 45^{\circ}=1000 \mathrm{~W} \\
& \mathrm{Q}=\mathrm{UI} \sin \varphi=100.14,14 \sin 45^{\circ}=1000 \mathrm{VAr} \\
& \mathrm{~S}=\mathrm{UI}=100.14,14=1414 \mathrm{VA}
\end{aligned}
$$

b) Phương pháp cơng suất

Đẻ tính dòng điẹn I trong nhánh chính ta có thé khơng sử dụng đơ thị vectơ mà sử dụnǵ phương pháp công suất nhu sau:

Từ dòng điện, tính cong suât $\mathrm{P}, \mathrm{Q}, \mathrm{S}$ của mạch như đả làm ở mục a , sau đó tính dòng điẹn I ơ mạch chính theo biêu thức:

$$
\mathrm{I}=\frac{\mathrm{S}}{\mathrm{U}}=\frac{1414}{100}=14,14 \mathrm{~A}
$$

c) Phương phâp sớ phức biểu diễn cắc đại lự̛̣ng và dịnh luật bảng số phúc Áp dụng định luạt Ôm

$$
\begin{aligned}
& \dot{I}_{R}=\frac{\dot{U}}{R}=\frac{100 \angle 0^{\circ}}{10}=10 \angle 0 \\
& \dot{I}_{L}=\frac{\dot{U}}{j X_{L}}=\frac{100 \angle 0^{\circ}}{j 5}=\frac{100 \angle 0^{\circ}}{5 \angle 90^{\circ}}=20 \angle-90^{\circ} \\
& \text { IC }_{C}=\frac{\dot{U}}{-j X_{C}}=\frac{100 \angle 0^{\circ}}{-j 10}=\frac{100 \angle 0^{\circ}}{10 \angle-90^{\circ}}=10 \angle 90^{\circ}
\end{aligned}
$$

Áp dụng Kiêcshôp 1 tại nút \mathbf{A}

$$
\begin{aligned}
\mathrm{I} & =\mathrm{I}_{\mathrm{R}}+\mathrm{I}+\mathrm{I}=10 \angle 0+20 \angle-90^{\circ}+10 \angle 90^{\circ} \\
& =10+\mathrm{j} 0+0-\mathrm{j} 20+0+\mathrm{j} 10=10-\mathrm{j} 10=14,14 \angle-45^{\circ}
\end{aligned}
$$

Trị so hiệu dụng các dờng điện là:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{R}}=10 \mathrm{~A} ; \mathrm{I}_{\mathrm{L}}=20 \mathrm{~A} ; \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A} \\
& \mathrm{I}=14,14 \mathrm{~A}
\end{aligned}
$$

Cách tính công suát $P, Q, S, \cos \varphi$ như ở mục a.
Ví dụ 18: Tính dòng điẹn trong mạch điện hình 3.29.
Day là mạch diẹn phức tạp, ta co thể sử dụng các phương pháp đã học ở chương 1 . Dưới đây ta xét 2 phương phâp sau:
a) Phtơng pháp biến đối tương dutơng

Hinh 3.29
Trược hết ta biéu diễn tởng trờ các nhânh dưới dạng sớ phức

$$
\begin{aligned}
& Z_{1}=j X_{1}=j 10 \\
& Z_{2}=-j X_{2}=-j 5 ; Z_{3}=R_{3}=8
\end{aligned}
$$

Nhánh 1 và 2 mác song song.
Tổng trở tương dương của nhánh 1 và 2 là

$$
Z_{12}=\frac{Z_{1} \cdot Z_{2}}{Z_{1}+Z_{2}}=\frac{j 10 \cdot(-j 5)}{j 10-j 5}=-j 10
$$

Tởng trở tương đương toàn mạch

$$
Z_{\mathrm{tm}}=Z_{3}+Z_{\mathrm{l} 2}=8 \cdot j 10=12,8 \angle-51,34^{\circ}
$$

Áp dụng định luạt Ôm

$$
\dot{I}_{3}=\frac{\dot{U}}{Z_{\mathrm{um}}}=\frac{200 \angle 0^{\circ}}{12,8 \angle-51,34^{\circ}}=15,625 \angle 51,34^{\circ}
$$

Trị so hiẹu dụng $I_{3}=15,625 \mathrm{~A}$
Pha dâuu $\Psi_{3}=51,34^{\circ}$
Điẹn áp

$$
\begin{aligned}
& \dot{U}_{A B}=Z_{12} \dot{I}_{3} \\
& Z_{12}=-j 10=10 \angle-90^{\circ} \\
& \dot{U}_{A B}=10 \angle-90^{\circ} \cdot 15,625 \angle 51,34^{\circ}=156,25 \angle-38,66^{\circ} \\
& \dot{I}_{1}=\frac{\dot{U}_{A B}}{Z_{1}} \\
& Z_{1}=j 10=10 \angle 90^{\circ} \\
& \dot{I}_{1}=\frac{156,25 \angle-38,66^{\circ}}{10 \angle 90^{\circ}}=15,625 \angle-128,66^{\circ}
\end{aligned}
$$

Trị sơ hiẹuu dưng $\mathrm{I}_{1}=15,625 \mathrm{~A}$
Pha dầu $\Psi_{1}=-128,66^{\circ}$

$$
\begin{aligned}
& \dot{I}_{2}=\frac{\stackrel{U}{U A B}^{Z_{2}}}{} \\
& \mathrm{Z}_{2}=-\mathrm{j} 5=5 \angle-90^{\circ} \\
& \mathrm{I}_{2}=\frac{156,25 \angle-38,66^{\circ}}{5 \angle-90^{\circ}}=31,25 \angle 51,34^{\circ}
\end{aligned}
$$

Trị so hiẹu dụng $\mathrm{I}_{2}=31,25 \mathrm{~A}$
Pha đàu $\Psi_{2}=51,34^{\circ}$
b) Phương pháp dòng diện nhánh.

Vê đòng điẹn các nhánh và các mạch vòng như trên hình 3.30.

Ẩn sơ là dòng điẹn các nhánh $\dot{i}_{1}, \dot{I}_{2}, \dot{I}_{3}$. Ta lạp hẹ 3 phương trình sau:

Phương trình Kiecshop 1 tại nút A

$$
-\dot{I}_{1}-\dot{I}_{2}+\dot{I}_{3}=0
$$

Phương trình Kiécshop 2 cho 2 mạch vong

Hinh 3.30

Mach vong 1:

$$
\begin{aligned}
& Z_{3} \dot{I}_{3}+Z_{1} \dot{I}_{1}=\dot{U} \\
& 8 \dot{I}_{3}+{\mathrm{j} 10 \mathrm{I}_{1}}=200 \angle 0^{\circ}
\end{aligned}
$$

Mạch vòng 2:

$$
\begin{aligned}
& z_{1} \dot{\mathrm{I}}_{1}-\mathrm{z}_{2} \dot{\mathrm{I}}_{2}=0 \\
& j 10 \dot{\mathrm{I}_{1}+j 5 \dot{I}_{2}}=0
\end{aligned}
$$

Giải hệ 3 phương trình trên ta sẹ có dòng điẹn $\dot{I}_{1}, \dot{I}_{2}, \dot{I}_{3}$.

CÂU HỢ ÔN TẬP VÀ BÀI TẬP

3.1. Dòng điện xoay chlếu hình sin là gì $?$ Biểu thức trị sớ tức thời, trị sớ hiệu dụng ? Y̌ nghīa trị số hiệu dụng?
3.2. Định nghĩa góc pha ψ_{i}, ψ_{u}, góc lậch pha φ. Đạa lương nào phụ thuộc vào chọn gớc toạ độ ? Bại lự̛̣ng nào phụ thuộc vào thồng só R, X của mạch ?
3.3. Hāy vết biểu thức I, φ, vè đớ thị vectơ cho các nhánh sau: R;L;C;RL;RC; LC ; RLC nới tiép.
3.4. Các blẻu thữc tính cơng suất tác dụng P ? P là công suất têeu thụ của phần tử nào trong mạch điệ̣n ? Y̌ nghỉa của công șuất tác dụng P ? Đơn vị của P ?
3.5. Các biêu thức tính công suắt phản kháng Q ? Q là công suất tiêu thụ của phần tử nào trong mạch đị̂̂n ? Y̛ nghỉa của cồng suất phản kháng Q ? Đơn vị của Q ?
3.6. Các biểu thức tính công suát biểu kiến S ? Y nghĩa của công suất biểu kiến S ? Đơn vi của S ?
3.7. Nêu cách biểu diển dòng điện và điện áp hình sin bằng vecto.
3.8. Nêu cách biếu diễn dòng điện và điện áp hình sin bầng sớ phức.
3.9. Sử dụng các phương pháp giải mạch điện đã xét ở mạch điện mợt chiều vào giải mạch điệ̣n xoay chiếu hình sin cấn chú ỳ gi ?
3.10. Biếu thức trị sớ tức thời của dòng điện và điện áp một nhánh là $\mathrm{i}=$ $10 \sqrt{2} \sin \left(\omega t-15^{\circ}\right)$ và $u=200 \sqrt{2} \sin \left(\omega t+25^{\circ}\right)$. Hây xác định $I_{\max }, U_{\max }, I, U, \Psi_{i}, \psi_{u} \varphi$. Đây là nhánh có tinh chắt gi ?

Đáp só : $I_{\text {max }}=10 \sqrt{2} \mathrm{~A} ; U_{\text {max }}=200 \sqrt{2} \mathrm{~V} ; 1=10 \mathrm{~A} ; U=200 \mathrm{~V} ; \psi_{i}=-15^{\circ}, \psi_{u}=$ $25^{\circ}, \varphi=40^{\circ}$; nhánh tính cám (RL).
3.11. Hảy biểu diển vectơ, só phức dòng điện và điện áp ở bài 3.10 . Xác định z , $\mathrm{R}, \mathrm{X}, \mathrm{Z}$ của nhánh.

Dáp sơ: $\overrightarrow{\mathrm{I}}=10 \angle-15^{\circ} ; \overrightarrow{\mathrm{U}}=200 \angle 25^{\circ} ; \dot{\mathrm{I}}=10 \mathrm{e}^{-\mathrm{j} 15^{\circ}} ; \dot{\mathrm{U}}=200 \mathrm{e}^{\mathrm{j} 25^{\circ}}$

$$
\begin{aligned}
& z=20 \Omega ; R=z \cos \varphi=15,32 \Omega ; X=z \sin \varphi=12,85 \Omega ; \\
& Z=R+j x=15,32+j 12,85=20 e^{400}
\end{aligned}
$$

3.12. Nguồn điện $U=230 \mathrm{~V}$ đắu vào mạch điện có $R=57 \Omega ; X_{L}=100 \Omega$ mảc nói tiếp.

Tinh I , $U_{R}, U_{L}, \cos \varphi, P, Q$ của mạch.
Dap só: $\quad I=2 A ; U_{R}=114 \mathrm{~V} ; U_{L}=200 \Omega$;
$\cos \varphi=0,495 ; P=228 \mathrm{~W} ; \mathrm{Q}_{\mathrm{L}}=400 \mathrm{VAr}$
Dơng điẹn chạ́m pha điện áp mợt góc 60,30
3.13. Mờt nguởn điện tấn sớ $f=10 \mathrm{kHz}$ cung cấp điện cho tải có $R=10 \mathrm{k} \Omega ; \mathrm{L}=$ 100 mH nới tiép. Người ta muớn cól $=0,2 \mathrm{~mA}$. Xác định điện áp nguớn U .

Đáp só: $U=2,36 \mathrm{~V}$
3.14. Mốt nguồn điện $U=15 \mathrm{~V} ; f=10 \mathrm{kHz}$ cung cắp điện cho tảl có $0,005 \mu F, R=1 \mathrm{k} \Omega$ nốl tiếp. Tính $\mathrm{I}, \cos \varphi=0,3, P, Q, \mathrm{U}_{\mathrm{G}}, \mathrm{U}_{\mathrm{F}}$.

Đáp số $I=4,5 \mathrm{~mA} ; \cos \varphi=0,3 ; P=20,25 \mathrm{~mW} ; \mathrm{Q}_{c}=-64,395 \mathrm{mVAr}$

$$
U_{R}=4,5 \mathrm{~V} ; U_{c}=14,31 \mathrm{~V} \text {. Dông diẹn viọt trưóc Gị̂n áp mọt góc 72,54. }
$$

3.15. Mọ̀t nguồn đię̣n có điện áp U, cung cấp điện cho tải có $R=15 \Omega ; X_{c}=20 \Omega$ mắc nớl tiếp. Biất cơng suất tác dụng của mạch điện $\mathrm{P}=240 \mathrm{~W}$. Tinh $\mathrm{I}, \mathrm{U}_{\mathrm{R}}, \mathrm{U}_{\mathrm{C}}, \mathrm{U}$, $\cos \varphi, Q$ của mạch điện.

Đáp só:I=4A; $U_{R}=60 \mathrm{~V} ; U_{c}=80 \mathrm{~V} ; U=100 \mathrm{~V} ; \cos \varphi=0,6$ (dòng diẹn vự̛̣t trutdc diên app) ; $Q_{c}=-320 \mathrm{VAr}$.
3.16. Một mạch điện như hinh B3.16. Cho biét $U_{L}=150 \mathrm{~V}$. Tính t_{1}, l_{2}, $I_{3}, I, P, Q, U, \cos \varphi$ của mạch

Đáp só
$t_{1}=5 A ; t_{2}=5 A ; I_{3}=10 A$
$I=5 \sqrt{2}=7,07 \mathrm{~A} ; P=250 \mathrm{~W}$
$Q=-250 \mathrm{VAr} ; U=50 \mathrm{~V}$
$\cos \varphi=0.707$ (dong dięn \mid vươt trutoc diẹn áp góc 45°).

HInh B3.16
3.17. Cho mạch điện như hình B3.17. Cho biết dòng điện $I_{3}=50 A$.
a. Tính $U_{A B} ; I_{1} ; I_{2} ; I_{4} ; I ; P ; Q ; S ; \cos \varphi ; U$ của mạch điện.
b. Xác định phấn tử nảo (R, X_{L} hoạ̣c X_{C}) đấu nối tiốp vào nhánh 2 đê cho dòng điện $I_{4}=0$. Tính trị sర phấn tử ăy và dơng điện I trong trường hợp này.

Đap só:
a) $U_{A B}=100 \mathrm{~V} ; I_{2}=20 \mathrm{~A} ; I_{1}=25 \mathrm{~A}$
$I_{4}=30 \mathrm{~A} ; I=39,05 \mathrm{~A} ;$
$P=5549,8 W$
$Q=-3000 \mathrm{VAr} ; S=6308,74 \mathrm{VA}$
$U=161,55 \mathrm{~V} ; \cos \varphi=0,879$
Dóng diẹn I vuợt trước diện áp U một góc 50,19
b) Cấn đấu X_{c} vào nhánh 2
$X_{c}=3 \Omega ; t=t_{t}=26,925 A$
3.18. Cho một cuộn dây có $R=$

Hinh 3.17
$4 \Omega, X_{L}=25 \Omega$ mắc nố tiép vớl tụ
điện có $X_{c}=22 \Omega$ đá̛u vào nguổn $U=220 \mathrm{~V}$.
a) Tính I; $Q_{L} ; Q_{C} ; Q ; \cos \varphi$ của mạch
b) Tinh điện áp đạt lên cuộn đây và điện áp đọ̣t lên tụ điện

Dáp són :

a) $I=44 \mathrm{~A} ; P=7744 \mathrm{~W}$
$Q_{L}=48400 \mathrm{VAr} ; Q_{C}=-42592 \mathrm{VAr}$
$Q=5808 \mathrm{VAr} ; \cos \varphi=0,8$ (dòng điẹn chạ̣m pha điẹ̆n áp góc $36,87^{\circ}$)
b) $U_{\text {cudn day }}=1113,99 \mathrm{~V} ; U_{c}=968 \mathrm{~V}$
3.19. Tinh döng alẹn $I_{1}, I_{2}, t, U_{A B}$ của mạch đlện hình B3.19.

Đáp sठ́: $I_{1}=20 \mathrm{~A} ; I_{2}=40 \mathrm{~A}$;

$$
I=20 \mathrm{~A} ; U_{A B}=240 \mathrm{~V}
$$

3.20. Một tả̉ có $R=6 \Omega, X_{L}=8 \Omega$
a) Tinnh hệ sớ công suất cửa tải. Người ta đấu tả̉ vào ngư̧ón $U=120 \mathrm{~V}$.
b) Tính công suất P, Q của tải đẻ̉ náng $\cos \varphi$ của mạh điện lên

Hinh B3.19 bằng 1 .

Ti̛nh dung lượng Q_{c} của bợ tụ mả́c song song va̛i tải. Tính C của bộ tụ, cho biết tằn sớ nguồn điện $f=50 \mathrm{~Hz}$.

Đáp só : a) $\cos \varphi=0,6$
b) $P=864 W ; Q=1152 \mathrm{VAr}$

$$
Q_{c}=-1152 \mathrm{VAr} ; C=2,547.1 \sigma^{-4} F
$$

Churong 4

MACH DIỆN BA PHA

4.1. KHÁI NIẸM CHUNG

Ngày nay dòng điện xoay chiêu ba pha được sử dụng rộng räi trong các ngành sản xuát vì :

- Đọng cơ điện ba pha có cấu tạo đơn giản và đặc tính tớt hơn đọng cơ diện mọt pha.
- Truyền tải diẹn năng bằng mạch điện ba pha tiết kiệm được day dẫn, giảm bớt tởn thấ điện năng và tởn thắ điện áp so với truyên tải điện năng bằng dòng điện mọt pha.

Mạch điẹn ba pha bao gồm nguốn điện ba pha, đường day truyền tải và các tải ba pha.

1. Nguốn điệṇ ba pha

Đẻ̉ tạo ra dòng điện ba pha, người ta dùng các máy phát điẹn xoay chiêu ba pha. Loaii máy phát điẹn trong các nhà máy điện hiện nay là máy phát điẹn đông bọ (dược trình bày chi tiét trong máy điện). Câu tạo của máy phát điện đống bộ (hình 4.1) gôm:

- Ba day quắn ba pha dật trong các rảnh của lỡi thép stato (phân tīnh). Các dây quấn này thường ký hiẹu là : AX (day quấn pha A) ; BY (day quấn pha B) ; CZ (day quấn pha C).

Các day quấn của các pha có cùng só vòng

Hinh 4.1. Câu tạo máy phát đồng bộ day và lệch nhau một góc 120° diẹn trong khơng gian.

- Phần quay (còn gọi là rôto) là nam châm điện $\mathrm{N}-\mathrm{S}$

Khi quay rôto, từ trường sẻ lần lượt quét qua các day quấn pha A , pha B pha C của stato và trong đây quấn pha stato xuất hiện sức điện động cảm úng, sức điện động này có dạng hình sin cùng biên đợ, cùng tần sớ góc ω và lẹ̣ch pha nhau mọt góc $\frac{2 \pi}{3}$.

Nêu chọn pha đầu của sức diẹn động e_{A} của day quấn AX bằng không, thì biểu thức sức điện động tức thời của các pha là :

Sức điện động pha A

$$
e_{A}=E \sqrt{2} \sin \omega t
$$

Sức điện động pha B

$$
e_{B}=E \sqrt{2} \sin \left(\omega t-\frac{2 \pi}{3}\right)
$$

Sức điện động pha C

$$
\mathrm{e}_{\mathrm{C}}=\mathrm{E} \sqrt{2} \sin \left(\omega \mathrm{t}-\frac{4 \pi}{3}\right)=\mathrm{E} \sqrt{2} \sin \left(\omega \mathrm{t}+\frac{2 \pi}{3}\right)
$$

hoặc biểu diễn bằng só phức

$$
\begin{aligned}
& \dot{\mathrm{E}}_{\mathrm{A}}=E \mathrm{e}^{\mathrm{j} 0} \\
& \dot{\mathrm{E}}_{\mathrm{B}}=E \mathrm{e}^{-\mathrm{j} \frac{2 \pi}{3}} \\
& \dot{\mathrm{E}}_{\mathrm{C}}=E \mathrm{e}^{\mathrm{j} \frac{2 \pi}{3}}
\end{aligned}
$$

Hình 4.2a vẽ̃ đô thị trị só́ tức thời hình sin và hình 4.2 b vẽ đô thị vectơ của sức điện động ba pha.

a)

b)

Hinh 4.2.

2. Cách nối mạch điện ba pha

Nêu môi pha của nguớn điện ba pha nới riêng rễ với mỡi pha của tải, thì ta có hệ thơng ba pha khơng liên hệ nhau (hình 4.3). Mỗi mạch điện như vậy gọi lả một pha của mạch điện ba pha.

Mạch diện ba pha không lien hệ nhau cẩn 6 dây dẫn, không tiết kiẹ̀m nên thực tế không dùng.

Thường ba pha của nguồn điện nới với nhau, ba pha của tải nối với nhau và có đường dây ba pha nớ

Hinh 4.3. Mạch điện 3 pha nới riêng rē nguồn với tải, dẫn điện nāng từ nguồn tới tải. Thơng thường dùng 2 cách nới: nối hình sao ký hiệu là Y và nới hình tam giác ky hiệu là Δ (xem các hình 4.4 , 4.5... ở các tiết tiếp theo).

Sức điện động, điện áp, đòng điện môi pha của nguồn điện (hoặc tải) gọi là sức điện động pha ký hiẹuu là E_{p}, điện áp pha ký hiệu là U_{p}, dòng điện pha ký hiệu là I_{P}.

Dòng điện chạy trên đường dây pha từ nguồn đến tải gọi là dòng điện dây ký hiệu là I_{d}, điện áp giữa các đường dây pha gọi là điện áp day, ky hiệu là U_{d}.

Các quan hệ giữa đại lượng pha và đại lượng dây phụ thuộc vào cách nới (hình sao hay tam giác) sẽ xét kỹ ở các tiết tiếp theo.

3. Mạch điện ba pha đói xứng

Nguồn điện gồm ba sức điện động hình sin cùng biên độ, cùng tần số, lệch nhau về pha $\frac{2 \pi}{3}$, gọi là nguồn ba pha đơi xứng. Đơi với nguồn đơi xứng, ta có :

$$
\begin{aligned}
& e_{A}+e_{B}+e_{C} \approx 0 \\
& \dot{E}_{A}+\dot{E}_{B}+\dot{E}_{C}=0
\end{aligned}
$$

Tải ba pha có tởng trở phức của các pha bằng nhau $\mathrm{Z}_{\mathrm{A}}=\mathrm{Z}_{\mathrm{B}}=\mathrm{Z}_{\mathrm{C}}$ - gọi là tải ba pha đơi xứng.

Mạch điện ba pha gồm nguồn, tải và đường dây đối xứng gọi là mạch điện ba pha đới xứng (còn được gọi là mạch ba pha cân bing). Nếu không thỏa mãn điếu kiện đã nêu gọi là mạch ba pha không đới xứng.
đ̛̉ mạch ba pha đới xứng, các đại lượng điẹn áp, dòng điện của các pha sẽ đới xứng, có trị só hiẹu dụng bằng nhau và lệch pha nhau 120°, tạo thành các hình sao đới xứng và tởng của chúng bằng không

$$
\begin{array}{r}
\dot{\mathrm{I}}_{\mathrm{A}}+\dot{\mathrm{I}}_{\mathrm{B}}+\dot{\mathrm{I}}_{\mathrm{C}} \approx 0 \\
\dot{\mathrm{U}}_{\mathrm{A}}+\dot{\mathrm{U}}_{\mathrm{B}}+\dot{\mathrm{U}} \dot{\mathrm{C}}=0
\end{array}
$$

4.2. CÁCH NÓI HÌNH SAO (Y)

1. Cách nôi

Môi pha của nguồn (hoạ̣c tải) có đầu và cuới. Thương quen ký hiệu đẩu pha là $\mathrm{A}, \mathrm{B}, \mathrm{C}$, cuới pha là $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$. Muớn nới hình sao ta nới ba điểm cuới của pha với nhau tạo thành điểm trung tính (hình 4.4a).

Đơi với nguồn, ba điểm cuóí $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ nơi với nhau thành điểm trung tính 0 của nguồn.

Đới với tải, ba điểm cuới $\mathrm{X}^{\prime}, Y^{\prime}, Z^{\prime}$ nơi với nhau tạo thành trung tính 0° của tải.

Ba dây nới 3 điểm đầu $\mathrm{A}, \mathrm{B}, \mathrm{C}$ của nguồn với 3 điềm đầu các pha của tải gọi là ba dây pha.

Dây dẫn nợi điểm trung tính của nguồn tới điểm trung tính của tải gọi là day trung tính.

2. Các quan hệ giữa đại lượng dây và pha khi đối xứng

a) Quan hệ giũa dòng diẹn dây và dòng diện pha

Hinh 4.4
Dòng điện pha I_{p} là dòng điện chạy trong mōi pha của nguồn (hoặc tải). Dòng điện dây I_{d} chạy trong các day pha nới từ nguồn tới tải. Các dòng điẹn
này đã được ký hiệu trên hình 4.4. Nhìn vào mạch điẹn ta thấy quan hẹ giữa dòng điện dây và dòng điện pha nhự sau:

$$
\begin{equation*}
\mathbf{I}_{d}=I_{p} \tag{4-1}
\end{equation*}
$$

b) Quan hệ giũa diện áp day và diện ap pha

Điện áp pha U_{p} là điện áp giữa điểm đầu và điểm cuôi của môi pha (hoặc giữa điểm đẩu của mỗi pha và điểm trung tính, hoặc giữa dây pha và dây trung tính).

Điện áp dây U_{d} là điện áp giữa 2 điểm đầu của 2 pha (hoặc điện áp giữa 2 dây pha), ví dụ điện áp dây U_{AB} (giữa pha A và pha B), U_{BC} (giữa pha B và pha C), U_{CA} (giữa pha C và pha A).

Theo dịnh nghĩa điện áp day ta co:

$$
\begin{align*}
& \dot{\mathrm{U}}_{\mathrm{AB}}=\dot{\mathrm{U}}_{\mathrm{A}}-\dot{\mathrm{U}}_{\mathrm{B}} \tag{4-2a}\\
& \dot{\mathrm{U}}_{\mathrm{BC}}=\dot{\mathrm{U}}_{\mathrm{B}}-\dot{\mathrm{U}}_{\mathrm{C}} \tag{4-2b}\\
& \dot{\mathrm{U}}_{\mathrm{CA}}=\dot{\mathrm{U}}_{\mathrm{C}}-\dot{\mathrm{U}}_{\mathrm{A}} \tag{4-2c}
\end{align*}
$$

Để vê đồ thị vectơ điện áp day, trước hết vẽ đờ thị vectơ điẹn áp pha U_{A}, $\mathrm{U}_{\mathrm{B}}, \mathrm{U}_{\mathrm{c}}$, sau đó dựa vào công thức (4-2) vẽ đồ thị vectơ điện áp dây nhự hình 4.4 b hoạc 4.4 c .

Xét tam giác OAB (hình 4.4b)

$$
\begin{aligned}
& \mathrm{AB}=2 \mathrm{AH}=2 \mathrm{OA} \cos 30^{\circ}=2 \mathrm{OA} \frac{\sqrt{3}}{2}=\sqrt{3} \mathrm{OA} \\
& \mathrm{U}_{\mathrm{d}}=\sqrt{3} \mathrm{U}_{\mathrm{p}}
\end{aligned}
$$

AB là điện áp dây U_{d}
OA là điện áp pha U_{p}
Từ đờ thị vectơ, ta thấy: Khi điện áp pha đới xứng, thì điện áp day đói xứng.

- Về trị só hiệu dụng

$$
\begin{equation*}
\mathrm{U}_{\mathrm{d}}=\sqrt{3} \mathrm{U}_{\mathrm{p}} \tag{4-3}
\end{equation*}
$$

- Về pha : điện áp day vượt trước điẹn áp pha tương ứng mợt góc $30^{\circ}\left(\mathrm{U}_{\mathrm{AB}}\right.$ vượt trươc U_{A} mọt góc 30°,

Hinh 4.4.c
U_{BC} vượt trước U_{B} một góc $30^{\circ}, \mathrm{U}_{\mathrm{CA}}$ vượt trước U_{c} một góc 30°).
Khi tải đới xứng $\quad \mathrm{I}_{\mathrm{A}}, \mathrm{I}_{\mathrm{B}}$, I_{C}, tạo thành hình sao đơii xứng, dòng điện trong day trung tính bằng không.

$$
\mathrm{I}_{0}=\dot{\mathrm{I}}_{\mathrm{A}}+\dot{\mathrm{I}}_{\mathrm{B}}+\dot{\mathrm{I}_{C}}=0
$$

Trong trường hợp này có thể không cần dây trung tính, ta có mạch ba pha ba day.

Động cơ điện ba pha là tả̉i đỡi xứng, chỉ cần đưa ba dây pha đến đợng cơ ba pha.

Khi tải 3 pha không đơi xứng, ví dụ như tài sinh hoạt của khu tạ̣p thể, của các gia đình ..., dây trung tính có dòng điện \mathbf{I}_{0} bằng

$$
\mathrm{I}_{0}=\dot{\mathrm{I}}_{\mathrm{A}}+\dot{\mathrm{I}}_{\mathrm{B}}+\dot{\mathrm{I}}_{\mathrm{C}}
$$

Ví dụ 1: Mợ nguồn điẹn ba pha đơi xứng nơi hình sao, điẹn áp pha nguồn $\mathrm{U}_{\mathrm{p}_{\mathrm{n}}}=220 \mathrm{~V}$.
Nguôn cung cáp điện cho tài R ba pha đơi xứng (hình 4.5a). Biét dòng điện day $\mathrm{I}_{\mathrm{d}}=10 \mathrm{~A}$. Tính điẹn áp day U_{d}, điẹn áp phá của tài, dòng diẹn pha của tải và của nguồn. Vẽ đồ thị vectơ.

Lờ giảl : Nguồn nới hình sao, áp dụng công thức (4-3) điện áp dáy là:

$$
\mathrm{U}_{\mathrm{d}}=\sqrt{3} \mathrm{U}_{\mathrm{p}}=\sqrt{3} .220=380 \mathrm{~V}
$$

Tải nơi hình sao, biết $U_{d}=380 \mathrm{~V}$, theo công thức (4-3) điện áp pha của tâi là

$$
U_{p 1}=\frac{U_{d}}{\sqrt{3}}=\frac{380}{\sqrt{3}}=220 \mathrm{~V}
$$

a)

b)

Hinh 4.5

Nguồn nới sao, tải nơi sao, âp dụng công thức (4-2)
Dòng điẹn pha nguồn

$$
I_{p n}=I_{d}=10 \mathrm{~A}
$$

Dòng điẹn pha của tải

$$
\mathrm{I}_{\mathrm{pl}}=\mathrm{I}_{\mathrm{d}}=10 \mathrm{~A} .
$$

Vi tải thuà̀n điẹn trở R, điẹn áp pha của tải trùng pha với dòng diẹn pha của tải $I_{\text {t }}$ (hình 4.5b).

4.3. CÁCH NỐI HìNH TAM GIÁC (Δ)

1. Cách nối

Muớn nới hình tam giác, ta lá́y đấu pha này nới với cuới pha kia. Ví dụ A nơi với Z ; B nới với X; C nới với Y (hình 4.6). Cách nơi tam giác không có dây trung tính.

2. Các quan hệ giữa đại lượng dây và pha khi đối xứng

Khi giải mạch điẹn nơi tam giâc ta thường quen quy ươc: chiều dương dòng điện các pha I_{p} của nguờn ngược chiếu quay kim đồng hồ, chiều dương dòng điện pha của tải cùng chiêúu quay kim đồng hờ (hình 4.6).

Hinh 4-6
Các đại lượng day và pha được ký hiệu trên hình 4.6a.
a) Quan hẹ giũ̃a điện ap day và điện áp pha

Nhìn vào mạch điẹn nới tam giác ta thây:

$$
\begin{equation*}
\mathrm{U}_{\mathrm{d}}=\mathrm{U}_{\mathrm{p}} \tag{4-4}
\end{equation*}
$$

b) Quan hệ giữa dong diẹn dây và dòng diẹn pha

Áp dụng định luật Kiécshôp 1 tại các nút, ta có :

$$
\begin{align*}
& \text { Tại nút } \mathrm{A}: \dot{\mathrm{I}}_{\mathrm{A}}=\dot{\mathrm{I}}_{\mathrm{AB}}-\dot{\mathrm{I}}_{\mathrm{CA}} \tag{4-5a}\\
& \text { Tại nút } \mathrm{B}: \dot{\mathrm{I}}_{\mathrm{B}}=\dot{\mathrm{I}}_{\mathrm{BC}}-\dot{\mathrm{I}}_{\mathrm{CA}} \tag{4-5b}\\
& \text { Tại nút } \mathrm{C}: \dot{\mathrm{I}}_{\mathrm{C}}=\dot{\mathrm{I}}_{\mathrm{CA}}-\dot{\mathrm{I}}_{\mathrm{BC}} \tag{4-5c}
\end{align*}
$$

Dòng diện I_{A}, I_{B}, I_{C} chạy trên các dây pha từ nguồn đến tải là dòng điện dây I_{d}. Dòng điện $I_{A B}, I_{B C}, I_{C A}$ chạy trong các pha là dòng điện pha, lệch pha với điện áp $\dot{U}_{\mathrm{AB}}, \dot{\mathrm{U}}_{\mathrm{BC}}, \dot{\mathrm{U}}_{\mathrm{CA}}$ một góc φ (hình 4.6 b). Để vẽ dòng điẹn dây I_{A}, $\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}$, ta dựa vào phương trình (4-4). Vectơ I_{AB} cộng với vectơ ($-\mathrm{I}_{\mathrm{CA}}$) ta có vectơ I_{A}; Quá trình tương tự ta vẽ I_{B}, I_{C}.

Đồ thị vectơ dòng điện pha $\mathrm{I}_{\mathrm{AB}}, \mathrm{I}_{\mathrm{BC}}, \mathrm{I}_{\mathrm{CA}}$ và dòng điện dây $\mathrm{I}_{\mathrm{A}}, \mathrm{I}_{\mathrm{B}}$, I_{C} vẽ trên hình 4.6b.

Xét tam giác OEF

$$
\begin{aligned}
\mathrm{OF} & \approx 2 \mathrm{OE} \frac{\sqrt{3}}{2}=\sqrt{3} \mathrm{OE} \\
\mathrm{I}_{\mathrm{d}} & =\sqrt{3} \mathrm{I}_{\mathrm{p}}
\end{aligned}
$$

OF là dòng diẹn dây I_{d}
OE là dòng diện pha I_{p}
Từ đồ thị vectơ ta thấy :

- Khi dòng điện pha đơi xứng thì dòng điện dây đới xứng.
- Về trị sơ hiẹu dụng

$$
\begin{equation*}
I_{d}=\sqrt{3} I_{p} \tag{4-6}
\end{equation*}
$$

- Về pha : dòng điện dây chạ̀m sau dòng điẹn pha tương ứng góc 30° (I_{A} chạm pha $I_{A B}$ một gớc $30^{\circ} ; I_{B}$ chạ̣m pha $I_{B C}$ mọt góc $30^{\circ} ; I_{C}$ chậm pha $I_{C A}$ một góc 30°).

Ví dụ 2 : Một mạch diện ba pha, nguồn diẹn nơi sao, tài nơi hình tam giác. Biết diẹn áp pha của nguồn $\mathrm{U}_{\mathrm{pn}}=2 \mathrm{kV}$, dòng diẹn pha của nguờn $\mathrm{I}_{\mathrm{p}}=20 \mathrm{~A}$.
a) Hãy vẽ sơ đồ nới day mạch ba pha và trên sơ đồ ghi rõ các đại lượng pha và day.
b) Hãy xác định đòng điẹn pha và điẹn áp pha của tải $I_{p}, U_{p r}$.

Lời giài :

a) Sơ đờ nơi dây mạch điện vẽ ở hình 4.7
b) Vì nguôn noi hình sao, nên dòng điẹn day bằng dòng điẹn pha

$$
\mathrm{I}_{\mathrm{d}}=\mathrm{I}_{\mathrm{pn}}=20 \mathrm{~A}
$$

Điẹn áp day bằng $\sqrt{3}$ lần điện áp pha nguồn

$$
\begin{aligned}
\mathrm{U}_{\mathrm{y}} & =\sqrt{3} \mathrm{U}_{\mathrm{pn}}=\sqrt{3} .2 \\
& =3,464 \mathrm{kV}
\end{aligned}
$$

Hinh 4.7

Vì tải nơi hình tam giác, nên điện áp pha của tải U_{p} bằng điện áp day

$$
\mathrm{U}_{\mathrm{pt}}=\mathrm{U}_{\mathrm{d}}=3,464 \mathrm{kV}
$$

Dòng điện pha của tải nhỏ hơn dòng điẹñ dây $\sqrt{3}$ lần

$$
\mathrm{I}_{\mathrm{pt}}=\frac{\mathrm{I}_{\mathrm{d}}}{\sqrt{3}}=\frac{20}{\sqrt{3}}=11,547 \mathrm{~A}
$$

Ví dụ 3 : Một mạch điẹn ba pha, tải nới hình sao, nguôn nới hình tam g Nguờn và tải đều đơi xứng. Biết dòng điện pha của tài $\mathrm{I}_{\mathrm{pl}}=50 \mathrm{~A}$, điện áp pha củ $\mathrm{U}_{\mathrm{p} 1}=220 \mathrm{~V}$.
a) Hảy vê sơ đô nơi đay mạch ba pha. Tren sơ đô chỉ rõ đại lượng pha và day.
b) Hãy xác định đòng điẹn pha và điẹn áp pha của nguờn $\mathrm{I}_{\mathrm{pn}}, \mathrm{U}_{\mathrm{p} \text { o }}$.

Lài giài : a) Sơ đờ nối day mạch điẹn ba pha vẽ trên hình 4.8

Hinh 4.8
b) Vì tài nơi hình sao nên

$$
\mathrm{I}_{d}=\mathrm{I}_{\mathrm{pt}}=50 \mathrm{~A}
$$

$$
\mathrm{U}_{j}=\sqrt{3} \mathrm{U}_{\mathrm{pl}}=\sqrt{3} .220=380 \mathrm{~V}
$$

Biết đòng điện dây và điện áp day, ta có thể tính được dòng điện pha và điện áp pha của nguờn. Vì nguồn đới xứng nối hình tam giác, nên ta có điện áp pha U_{pn} của nguốn là :

$$
\mathrm{U}_{\mathrm{pn}}=\mathrm{U}_{\mathrm{d}}=380 \mathrm{~V}
$$

Dòng điện pha của nguồn là

$$
\mathrm{I}_{\mathrm{pn}}=\frac{\mathrm{I}_{\mathrm{d}}}{\sqrt{3}}=\frac{50}{\sqrt{3}}=28,868 \mathrm{~A}
$$

4.4. CÔNG SUẤT CỦA MACCH ĐIỆN BA PHA

1. Công suất tác dụng P

Công suất tác dụng P của mạch ba pha bằng tổng công suât tác dụng của các pha cộng lại. Gọi $\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{B}}, \mathrm{P}_{\mathrm{C}}$ tương ứng là công suất tác dụng của pha $\mathrm{A}, \mathrm{B}, \mathrm{C}$ ta có:

$$
\begin{aligned}
P & =P_{A}+P_{B}+P_{C} \\
& =U_{A} I_{A} \cos \varphi_{A}+U_{B} I_{B} \cos \varphi+U_{C} I_{C} \cos \varphi_{C}
\end{aligned}
$$

Khi ba pha đối xứng
Điện áp pha: $\mathrm{U}_{\mathrm{A}}=\mathrm{U}_{\mathrm{B}}=\mathrm{U}_{\mathrm{C}}=\mathrm{U}_{\mathrm{P}}$
Dọ̀ng điện pha: $I_{A}=I_{B}=I_{C}=I_{P}$
Hệ só́ công suất : $\cos \varphi_{\mathrm{A}}=\cos \varphi_{\mathrm{B}}=\cos \varphi_{\mathrm{C}}=\cos \varphi$

$$
\begin{array}{ll}
\text { ta có } & \mathrm{P}=3 \mathrm{U}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}} \cos \varphi \\
\text { hoặc } & \mathrm{P}=3 \mathrm{R}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}^{2} \tag{4-8}
\end{array}
$$

Trong đó R_{p} là điện trở pha của tải.
Thay đại lượng pha bằng đại lượng day :
đơi với cách nới hình sao : $\quad I_{p}=I_{d} ; U_{p}=\frac{U_{d}}{\sqrt{3}}$
đói với hình tam giác: $\mathrm{I}_{\mathrm{p}}=\frac{\mathrm{I}_{\mathrm{d}}}{\sqrt{3}} ; \mathrm{U}_{\mathrm{p}}=\mathrm{U}_{\mathrm{d}}$ vào công thức (4-7) ta có biểu thức công suất viết theo đại lượng day, áp. dụng cho cả trường hợp hình sao và hình tam giác đơi xứng.

$$
\begin{equation*}
\mathrm{P}=\sqrt{3} \mathrm{U}_{\mathrm{d}} \mathbf{I}_{\mathrm{d}} \cos \varphi \tag{4-9}
\end{equation*}
$$

trong đó φ - góc lệch pha giữa điẹn áp pha và dòng điện pha tương ứng

$$
\cos \varphi=\frac{R_{p}}{\sqrt{R_{p}^{2}+X_{p}^{2}}}
$$

2. Công suất phản kháng Q

Công suất phản kháng Q của ba pha là tồng công suất phản kháng của các pha cộng lại

$$
\begin{aligned}
Q & =Q_{A}+Q_{B}+Q_{C} \\
& =U_{A} I_{A} \sin \varphi_{A}+U_{B} I_{B} \sin \varphi_{B}+U_{C} I_{C} \sin \varphi_{C}
\end{aligned}
$$

Khi mạch đối xứng ta $\mathrm{cơ}$:

$$
\begin{equation*}
Q=3 U_{p} I_{p} \sin \varphi \tag{4-10}
\end{equation*}
$$

hoặc

$$
\begin{equation*}
\mathbf{Q}=3 \mathbf{X}_{\mathbf{p}} \mathbf{I}_{\mathbf{p}}^{\mathbf{p}} \tag{4-11}
\end{equation*}
$$

trong đó: X_{p} - là điện kháng pha của tải.
Nêu tính theo các đại lượng day

$$
\begin{equation*}
\mathrm{Q}=\sqrt{3} \mathrm{U}_{\mathbf{d}} \mathrm{I}_{\mathrm{d}} \sin \varphi \tag{4-12}
\end{equation*}
$$

3. Công suất biểu kiến của mạch 3 pha đới xứng

	$S=3 U_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}$
hoặc	$\mathrm{S}=\sqrt{3} \mathrm{U}_{\mathrm{d}} \mathbf{I}_{\mathrm{d}}$
hoặc	$\mathrm{S}=3 \mathrm{Z}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}{ }^{2}$

Vî dụ 4 : Mọt dọng cơ điẹn ba pha có công suất đị̀nh mức $P_{\text {dm }}=14 \mathrm{~kW}$, hiẹu suất định mức $\eta_{d m}=0,89$, hệ so cong suât định mức $\cos \varphi_{d m}=0,88$. Day quấn động co điẹn nơi hình sao, diẹn áp day mạng điẹn $U_{t}=380 \mathrm{~V}$.

Tính điẹn áp đạt lên mōi pha day quấn.
Tính dòng điẹn day và dòng điẹn pha của động cơ điẹn.

Lờ giài :

a) Sơ đô nơi đay của đọng cơ tren hình 4.9. Vl đay quán dộng cơ nới hình sao, nen điẹn áp pha đặt vào mỡi dày quấn pha là

$$
\mathrm{U}_{\mathrm{P}}=\frac{\mathrm{U}_{\mathrm{d}}}{\sqrt{3}}=\frac{380}{\sqrt{3}}=220 \mathrm{~V}
$$

b) Dơi vơi dọng co điẹn, cong suát định mức P_{am} là cong suât co có ích ơ trục đọng cơ, vạy cong suât điện đọng cơ tiéu thụ là:

$$
P_{\text {dieq }}=\frac{P_{d m}}{\eta_{\mathrm{dm}}}
$$

Theo công thức (4-9)

$$
P_{\text {dien }}=\sqrt{3} U_{d} I_{d} \cos \varphi
$$

Vậy dòng điện của động cơ là

$$
I_{d}=\frac{P_{\text {dien }}}{\sqrt{3} U_{d} \cos \varphi}=\frac{P_{d m}}{\sqrt{3} U_{d} \cos \varphi_{d m} \eta_{d m}}=\frac{14 \cdot 10^{3}}{\sqrt{3} \cdot 380.0,88.0,89}=27,16 \mathrm{~A} .
$$

Vi day quấn nới hình sao nên

$$
I_{p}=I_{d}=27,16 \mathrm{~A} .
$$

Hinh 4.9
Ví dụ 5 : Mọt mạch điẹn ba pha đơi xứng $\mathrm{U}_{\mathrm{d}}=380 \mathrm{~V}$ cung cáp điện cho 2 tài đ $\sigma \mathrm{i}$ xứng: Tải 1 tiêu thụ $P_{1}=6 \mathrm{~kW} ; \mathrm{Q}_{1}=4 \mathrm{kVAr}$. Tài 2 tiêu thụ $\mathrm{P}_{2}=8 \mathrm{~kW} ; \mathrm{Q}_{2}=2 \mathrm{kVAr}$.
.a) Tính dòng điẹn day của mōi tải
b) Tính dòng diện dây I_{d} của nguờn cung cấp choo 2 tải trên.

Lờ giài : a) Sơ dờ mạch điẹn 3 pha vê trên hình 4-10
Công suất biểu kiến tải 1

$$
S_{1}=\sqrt{P_{1}^{2}+Q_{1}^{2}}=\sqrt{6^{2}+4^{2}}=7,211 \mathrm{kVA} .
$$

Công suất biêu kién tải 2

$$
\mathrm{S}_{2}=\sqrt{\mathrm{P}_{Q}^{2}+\mathrm{Q}_{1}^{2}}=\sqrt{8^{2}+2^{2}}=8,246 \mathrm{kVA} .
$$

Theo cong thức ($4-14$), dòng điẹn day của tải 1 là

$$
\mathbf{I}_{1}=\frac{S_{1}}{\sqrt{3} U_{d}}=\frac{7211}{\sqrt{3} .380}=10,956 \mathrm{~A}
$$

dòng diện day của tải 2

$$
\begin{aligned}
\mathrm{I}_{2} & =\frac{\mathrm{S}_{2}}{\sqrt{3} \mathrm{U}_{\mathrm{d}}} \\
& =\frac{8246}{\sqrt{3} \cdot 380}=12,528 \mathrm{~A}
\end{aligned}
$$

Đẻ tính dòng điện I_{d} của nguồn cung cấp cho tải, ta cân tính công suât cùa nguồn.

Cong suát tác dụng nguờn cung cáp cho 2 tải

$$
\begin{aligned}
P & =P_{t}+P_{2} \\
& =6+8=14 \mathrm{~kW}
\end{aligned}
$$

Hinh 4.10

Công suá̛t phản kháng nguồn cung cấp cho 2 tải

$$
\mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2}=4+2=6 \mathrm{kVAr}
$$

Công suất biểu kiến nguồn

$$
\mathrm{S}=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}=\sqrt{14^{2}+6^{2}}=15,231 \mathrm{kVAr}
$$

Áp dụng cơng thức ($4-14$) ta cơ dòng điẹn day nguồn cung cấp cho 2 tải

$$
I_{d}=\frac{S}{\sqrt{3} U_{d}}=\frac{15231}{\sqrt{3} .380}=23,14 \mathrm{~A}
$$

4.5. CÁCH GIẢI MẠCH ĐIỆN BA PHA ĐỐI XỨNG

Đơi với mạch điẹn ba pha đơi xứng, dòng điện (điện áp) các pha cơ trị s hiệu dụng bằng nhau, và lẹch pha nhau một góc. Vì vạy khi mạch đơi xứng, ti tách ra mọt pha để tính, khi biêt được dòng điện của một pha, ta có thẻ suy r dòng điện cấc pha còn lại.

Khi tải nới vào nguồn có điện áp dayy U_{d}, bỏ qua tổng trở đường dây, né́ biết tởng trở tải, các bước tính toán thực hiẹn như sau:

- Bước 1 : Xác định cách nới dây của tải (hình sao hay hình tam giác).
- Bước 2 : Xác định điện áp pha U_{p} của tải

Néu tải nóí hình sao

$$
\mathrm{U}_{\mathrm{p}}=\frac{\mathrm{U}_{\mathrm{d}}}{\sqrt{3}}
$$

Nếu tải nới hình tam giác

$$
\mathrm{U}_{\mathrm{p}}=\mathrm{U}_{\mathrm{d}}
$$

- Bước 3 : Xác định tởng trở pha Z_{p} và hệ sơ công suất của tải

Tởng trở pha của tải.

$$
z_{p}=\sqrt{R_{p}^{2}+X_{p}^{2}}
$$

Hẹ so cong suất $\cos \varphi=\frac{\mathrm{R}_{\mathrm{p}}}{\mathrm{z}_{\mathrm{p}}}=\frac{\mathrm{R}_{\mathrm{P}}}{\sqrt{\mathrm{R}_{\mathrm{p}}{ }^{2}+\mathrm{X}_{\mathrm{p}}{ }^{2}}}$
trong đó $\mathrm{R}_{\mathrm{P}}, \mathrm{X}_{\mathrm{p}}$ tương ứng là điện trở pha, điện kháng pha của mỗi pha của tải.

- Bượ 4 : Tính dòng điện pha I_{p} của tải

$$
I_{p}=\frac{U_{p}}{z_{p}}
$$

Từ dòng điện pha I_{p}, tính dòng điện dây I_{d} của tải.
Nếu tải nđ̛́i hình sao

$$
\mathrm{I}_{\mathrm{d}}=\mathrm{I}_{\mathrm{p}}
$$

Nêu tải nơi hình tam giác

$$
I_{d}=\sqrt{3} I_{p}
$$

- Bước 5 : Tính công suất tải tiêu thụ

$$
\begin{aligned}
& \mathbf{P}=3 R_{p} I_{p}{ }^{2} \text { hoặc } 3 U_{p} I_{P} \cos \varphi \text { hoặc } \sqrt{3} U_{d} I_{d} \cos \varphi . \\
& Q=3 X_{p} I_{p}{ }^{2} \text { hoạc } 3 U_{p} I_{P} \sin \varphi \text { hoặc } \sqrt{3} U_{d} I_{d} \sin \varphi . \\
& S=3 Z_{P} I_{p}{ }^{2} \text { hoạc } 3 U_{P} I_{P} \text { hoạạc } \sqrt{3} U_{d} I_{d} .
\end{aligned}
$$

Ví dụ 6 : Một tải 3 pha có điẹn trở pha $R_{p}=20 \Omega$, điẹn kháng pha $X_{p}=15 \Omega$, nơi hình tam giác, đáu vào mạng điẹn cơ diẹn áp dây $U_{d}=220 \mathrm{~V}$ (hình 4.11 a). Tính dòng diẹn pha I_{p}, dòng điẹ̣n dây I_{d}, cong suất tải tiêu thụ và vẽ đô thị vectơ diện áp day và dòng điẹn pha tài.

Lờ giải : Theo sơ đớ nới day mạch điẹn, tải nđ̛i tam giác.
Điện áp pha của tải

$$
\mathrm{U}_{\mathrm{p}}=\mathrm{U}_{\mathrm{t}}=220 \mathrm{~V}
$$

Tơng trở pha cùa tài

$$
z_{\mathrm{P}}=\sqrt{\mathrm{R}_{\mathrm{P}}^{2}+\mathrm{X}_{\mathrm{p}}^{2}}=\sqrt{20^{2}+15^{2}}=25 \Omega
$$

Dờng điện pha của tải

$$
\mathrm{I}_{\mathrm{P}}=\frac{\mathrm{U}_{\mathrm{p}}}{\mathrm{z}_{\mathrm{p}}}=\frac{220}{25}=8,8 \mathrm{~A}
$$

Vì tải nối tam giác, dờng điện dày của tải:

$$
\mathrm{I}_{\mathrm{d}}=\sqrt{3} \mathrm{I}_{\mathrm{p}}=\sqrt{3} \cdot 8,8=15,24 \mathrm{~A}
$$

Công şuất tải tiêu thụ

$$
\begin{aligned}
& \mathrm{P}=3 \mathrm{R}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}^{2}=3 \cdot 20 \cdot 8,8^{2}=4646,4 \mathrm{~W} \\
& \mathrm{Q}=3 \mathrm{X}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}^{2}=3 \cdot 15 \cdot 8,8^{2}=3484,8 \mathrm{VAr} \\
& \mathrm{~S}=\sqrt{3} \mathrm{U}_{\mathrm{d}} \mathrm{I}_{\mathrm{d}}=\sqrt{3} \cdot 380 \cdot 15,24=10030,35 \mathrm{VA}
\end{aligned}
$$

Hẹ sớ cong suất của tải

$$
\begin{aligned}
\cos \varphi & =\frac{R_{p}}{Z_{p}}=\frac{20}{25}=0,8 \\
\varphi & =36,87^{\circ}
\end{aligned}
$$

Dòng điện pha chạm sau điẹn áp pha một góc $\varphi=36,87^{\circ}$. Đờ thị vectơ dòng điện và điện âp pha vẽ trên hình 4.11.

a)

b)

Hinh 4.11
Ví dụ 7: Mọt tải 3 pha gồm ba cuộn dây dấu vào mạng diện ba pha có điện áp dây là 380 V . Cuộn day được thiết kế cho làm việc với diện áp định mức 220 V . Cuộn dây có điện trở $\mathrm{R}=2 \Omega$; điẹn n kháng $\mathrm{X}=8 \Omega$.
a) Xác định cách nới các cuộn đay thành tải ba pha.
b) Tính công suất $P, Q, \cos \varphi$ của tải.

Lời glải : a) Các cuộn day nơi hình sao đáu vào mạng diẹn, vì khi nới hình sao diẹn áp pha đật lên cuợn dây là:

$$
\mathrm{U}_{\mathrm{P}}=\frac{\mathrm{U}_{\mathrm{d}}}{\sqrt{3}}=\frac{380}{\sqrt{3}}=220 \mathrm{~V}=\text { điẹn áp định mức của cuộn day (hình 4.12a). }
$$

Nếu tải nới tam giác, điện áp pha đạt lên cuọn day là $\mathrm{U}_{\mathrm{p}}=\mathrm{U}_{\mathrm{d}}=380 \mathrm{~V}>$ diẹn áp định mức của cuộn day, cuọn day sẽ bị hơng (hình 4.12b)

Hinh 4.12
b) Tông trơ pha của tải $z_{p}=\sqrt{R_{p}^{2}+X_{p}{ }^{2}}=\sqrt{2^{2}+8^{2}}=8,24 \Omega$

Hẹ só công suất $\cos \varphi$ của tải

$$
\begin{aligned}
& \cos \varphi=\frac{R_{p}}{z_{p}}=\frac{2}{8,24}=0,242 \\
& \sin \varphi=\frac{x_{p}}{z_{p}}=\frac{8}{8,42}=0,97
\end{aligned}
$$

Dòng điẹn pha I_{p} của tải

$$
I_{P}=\frac{U_{p}}{z_{p}}=\frac{220}{8,24}=26,7 \mathrm{~A}
$$

Dòng diẹnn day I_{d}

$$
I_{d}=I_{p}=26,7 \mathrm{~A}
$$

Công suất tác dụng P của tải

$$
P=\sqrt{3} U_{d} I_{d} \cos \varphi=\sqrt{3} \cdot 380 \cdot 26,7 \cdot 0,242=4252,6 \mathrm{~W}
$$

Công suất phản kháng Q của tải

$$
Q=\sqrt{3} U_{d} I_{d} \sin \varphi=\sqrt{3} \cdot 380 \cdot 26,7 \cdot 0,97=17045,7 \mathrm{VAr}
$$

Công suất biêu kiến S

$$
S=\sqrt{3} U_{d} I_{d}=\sqrt{3} \cdot 380.26,7=17572,8 \mathrm{VA}
$$

4.6. GIẢI MACH BA PHA KHÔNG ĐỐI XƯNG CÓ DÂY TRUNG TÍNH

Mạng điện sinh hoạt, cung cáp điện cho các khu dân cư là mạng điẹn ba pha 4 dayy : 3 dây pha $\mathrm{A}, \mathrm{B}, \mathrm{C}$ và dây trung tính. Điện cung cấp cho mọt căn hộ lấy từ một pha và dây trung tính (diẹn áp pha). Tải các pha không giơng nhau và thay đối nhiều. Đay là mạch ba pha không đới xứng (hình 4.13).

Hinh 4. 13
Bỏ qua tởng trở dây trung tính (nghĩa là bỏ qua điẹn áp rơi trên dây trung tính) điện thé điểm trung tính O^{\prime} của tải coi là trùng với điẹn thế điểm trung tính O của nguồn. Khi tải các pha thay đổi điện áp U_{p} trên tải hầu như vẳn giữ được bình thường (hình 4.13b), không vượt quá điẹn áp pha.

Đay là tư điểm của day trung tính. Khi không có dayy trung tính, hoạ̣c dây trung tính bị đứt, nếu tải các pha thay đởi thì điểm trung tính O° của tải lệch khỏi điểm trung tînh O của nguồn, điẹn áp pha của tải $\mathrm{U}_{\mathrm{A}}^{\prime}, \mathrm{U}_{\mathrm{B}}^{\prime}, \mathrm{U}_{\mathrm{C}}^{\prime}$ thay đôi rất nhiều (hình 4.13 c), có pha điện áp tăng lên, có pha điẹn áp giảm đi (ví dụ tải pha A chịu điện áp U_{A}^{\prime} lớn hơn U_{p} rất nhiểu, trong khi đó điện áp U_{B}^{\prime} của tải pha B nhỏ hơn U_{p}.

Đơi với mạch ba pha hình sao có day trung tính, do tải không đôi xứng, ta lần lượt giải từng pha riêng rẽ, tính được dòng điện các pha $\mathrm{I}_{\mathrm{A}}, \mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}$, công suất các pha $\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{B}}, \mathrm{P}_{\mathrm{C}} \ldots$, dòng điẹn trong day trung tính I_{0} và công suất ba pha nhu sau:

Dòng điện trung tính $\mathrm{I}_{\mathbf{0}}$
bằng đồ thị vectơ

$$
\overrightarrow{\mathrm{I}}_{\mathrm{O}}=\overrightarrow{\mathrm{I}}_{\mathrm{A}}+\overrightarrow{\mathrm{I}}_{\mathrm{B}}+\overrightarrow{\mathrm{I}}_{\mathrm{C}}
$$

hoặc bằng s 6 phức

$$
\dot{\mathrm{I}}_{\mathrm{O}}=\dot{\mathrm{I}}_{\mathrm{A}}+\dot{\mathrm{I}}_{\mathrm{B}}+\dot{\mathrm{I}}_{\mathrm{C}}
$$

Cong suất ba pha

$$
\begin{gathered}
\mathrm{P}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}} \\
\mathrm{Q}=\mathrm{Q}_{\mathrm{A}}+\mathrm{Q}_{\mathrm{B}}+\mathrm{Q}_{\mathrm{C}}
\end{gathered}
$$

Để hiểu rô ta hăy xét các vî dụ dưới đây.
Ví dụ 8 : Mọt mạch điện 3 pha có day trung tính $380 \mathrm{~V} / 220 \mathrm{~V}$ cung cấp điện ch 90 bóng đèn sợi đớt, sơ hiệu định mức của mồi đèn $\mathrm{U}_{\mathrm{dm}}=220 \mathrm{~V} ; \mathrm{P}_{\mathrm{dm}}=60 \mathrm{~W}$.

Só bơng đèn được phâr. đêu cho 3 pha. .
a) Vẽ sơ đơ mạch diẹn ba pha.
b) Tính $I_{A}, I_{B}, I_{C}, I_{0}, P$ khi tất cả bơng đèn đều bạt sáng.
c) Tính $I_{A}, I_{\text {B }}, I_{0}, P$ khi pha A có 10 đèn bạt sáng pha B co 20 dèn bạt sáng, phà C cát điẹn
d) Tónh diẹn áp dạt len các đèn pha A và pha B ở mục C , khi pha C căt điẹn và dày trung tính bị dứt.

Hinh 4.14

Lời giài :

a) Mạch diẹn 3 pha $380 \mathrm{~V} / 220 \mathrm{~V}$ là mạch ba pha 4 day, 3 day pha và day trung tính. 380 V là điẹn áp dây (giữa các day pha)
220 V là điẹn áp pha (giữa day pha và day trung tính).
Bông đèn 220 V mắc song song vơi nhau giữa day pha và day trung tính. So do mắc day vê trèn hình 4.14 . Điẹn áp đạt lên các đèn là $220 \mathrm{~V}=\mathrm{U}_{\text {dm }}$ của đèn, các đèn làm viẹ̣c đúng định mức.
b) Vì điện áp đật lên bóng đên bằng định mức cơng suất bơng đèn tiêu thụ bằng định mức 60W.

Tát cả bơng đèn đều bạt sáng mạch ba pha đơi xựng công suất điẹn các pha bằng nhau:

$$
P_{A}=P_{B}=P_{C}=P_{p}=30.60=1800 \mathrm{~W}
$$

Công suât ba pha

$$
\mathrm{P}=3 \mathrm{P}_{\mathrm{p}} \approx 3.1800=5400 \mathrm{~W} .
$$

Hinh 4.15

Tải là các bơng đèn, thuần điện trở $R, g o ̛ c ~ l e ̣ ̂ c h ~ p h a ~ \varphi ~=~ 0 ; ~ \cos \varphi=1$, nên dơng điện các pha là :

$$
I_{A}=I_{B}=I_{C}=I_{P}=\frac{P_{p}}{U_{p} \cos \varphi}=\frac{1800}{220.1} \approx 8,18 \mathrm{~A}
$$

Vì nguồn và tải đơi xứng nên

$$
\overrightarrow{\mathbf{I}}_{\mathrm{o}}=\overrightarrow{\mathrm{I}}_{\mathrm{A}}+\overrightarrow{\mathbf{I}}_{\mathrm{B}}+\overrightarrow{\mathrm{I}}_{\mathrm{C}}=0
$$

Đồ thị vectơ vẻ trên hình 4.15 , trong đó dòng điện trùng pha điện áp, $\dot{\mathrm{I}}_{\mathrm{A}}, \dot{\mathrm{I}}_{\mathrm{B}}, \dot{\mathrm{I}} \mathrm{c}$ tạo thành hệ thớng vectơ đơi xứng.
c) Khi pha C cát điẹñ, $\mathrm{I}_{\mathrm{C}}=0$; các pha khác vẩn bình thường, điện áp trên các đèn vān định mức

$$
\begin{gathered}
I_{A}=\frac{P_{A}}{U \cos \varphi}=\frac{10.60}{220.1}=2,73 \mathrm{~A} \\
I_{B}=\frac{P_{B}}{U \cos \varphi}=\frac{20.60}{220.1}=5,45 \mathrm{~A} \\
P=P_{A}+P_{B}=10.60+20.60=1800 \mathrm{~W}
\end{gathered}
$$

Đồ thị vectơ vẽ trên hình 4.16.

Hinh 4.16

Theo công thức hình học, trị só hiệu dụng I_{0} là

$$
\begin{aligned}
I_{0} & =\sqrt{I_{A}^{2}+I_{B}^{2}+2 I_{A} I_{B} \cos 120^{\circ}} \\
& =\sqrt{2,73^{2}+5,45^{2}-2.2,73.5,45.0,5}=4,72 \mathrm{~A}
\end{aligned}
$$

d) Khi pha C cắt điẹn và đồng thời dây trung tính bị đứt, mạch điẹn còn lại vẽ ở hình 4.17 a , đèn pha A và pha B mấc nới tiếp nhau và nói vào điện áp dây U_{AB}.

Hinh 4.17

Lúc này điện áp đật lên đên không còn bằng định mức, công suăt đèn tiêu thụ chưa biết. Để tính toán, trước hé́t tỉnh điện trở của bóng đèn

$$
\mathrm{R}_{\mathrm{Jen}}=\frac{\mathrm{U}_{\mathrm{dm}}^{2}}{\mathrm{P}_{\mathrm{dm}}}=\frac{220^{2}}{60}=806,6 \Omega
$$

Vì các bớng đèn mắc song song, nên điện trở pha $\mathrm{A}, \mathrm{R}_{\mathrm{A}}$ bằng điện trở tương dương của 10 bóng đèn má́c song song

$$
\mathrm{R}_{\mathrm{A}}=\frac{\mathrm{R}_{\mathrm{C} \mathrm{\lambda} \mathrm{n}}}{10}=\frac{806,6}{10}=80,66 \Omega
$$

Pha B có 20 bóng đèn mấc song song nên điện trở pha B là

$$
\mathrm{R}_{\mathrm{B}}=\frac{\mathrm{R}_{\mathrm{den}}}{20}=\frac{806,6}{20}=40,33 \Omega
$$

Mạch điện tương đương vẽ trên hình 4.17b.
Dòng điện I chạy trong mạch :

$$
I=\frac{U_{A B}}{R_{A}+R_{B}}=\frac{380}{80,66+40,33}=3,14 \mathrm{~A}
$$

Điẹ̣n áp đặt lên đèn pha A là

$$
U_{A}^{\prime}=R_{A} \cdot I=80,66 \cdot 3,14=253,27 \mathrm{~V}
$$

Điện áp đặt lên đèn pha B là

$$
\mathrm{U}_{\mathrm{B}}^{\prime}=\mathrm{R}_{\mathrm{B}} \mathrm{I}=40,33 \cdot 3,14=126,63 \mathrm{~V}
$$

Điện áp đặt lên đèn pha A

$$
\mathrm{U}_{\mathrm{A}}^{\prime}=253,27 \mathrm{~V}>\mathrm{U}_{\mathrm{dm}}=220 \mathrm{~V}
$$

đèn pha A phát sáng quá mức co thẻ̉ bị cháy.
Điện áp đặt lên đèn pha B

$$
\mathrm{U}_{\mathrm{B}}^{\prime}=126,63 \mathrm{~V}<\mathrm{U}_{\mathrm{dm}}=220 \mathrm{~V}
$$

đèn pha B phát sáng dưới định mức.
Qua ví dụ trên, ở mục c tuy tả̉i thay đởi song nhờ có dây trung tính nên điện áp đặt lên đèn khơng vượt quá định mức. Ở mục d , không cơ dây trung tính khi tải thay đôi, điện áp trên các pha của tải thay đởi rất nhiểu, có pha điện áp vượt quá định mức.

4.7. ĐO CÔNG SUẤT MẠCH ĐIỆN BA PHA

1. Đo cơng suất mạch điện ba pha đơi xứng

Công suất các pha bằng nhau, ta chỉ cấn đo cờng suất mọt pha (hình 4.18) rồi nhân ba

$$
\begin{equation*}
\mathrm{P}=3 \mathrm{P}_{\mathrm{P}} \tag{4-16}
\end{equation*}
$$

2. Đo công suất mạch ba pha không đơi xứng

Ta dùng 3 oát kế đo công suất tùng pha rồi cộng lại (hình 4:19).

$$
P=P_{A}+P_{B}+P_{C}
$$

Đới với mạch 3 pha 3 dây (không có dáy trung tính) ta có thể dùng 2 oát kể mấc day theo sơ đồ hình 4.20.

Trong sơ đồ này oát kě 1 có điện áp day U_{Ac} và dòng điện i_{A}, oát kế 2 có điện áp dây $U_{B C}$ và dòng điện i_{B}.

Hinh 4.18

Công suất tức thời qua 2 oát kế là

$$
p_{1}+p_{2}=u_{A C} i_{A}+u_{B C} i_{B}
$$

Vì

$$
\begin{aligned}
& u_{A C}=u_{A}-u_{C} \\
& u_{B C}=u_{B}-u_{C} \\
& -\left(i_{A}+i_{B}\right)=i_{C}
\end{aligned}
$$

nên

$$
p_{1}+p_{2}=u_{A} i_{A}+u_{B} i_{B}+u_{C} i_{C}=p_{A}+p_{B}+p_{C}
$$

Hinh 4.15

Hinh 4.20

Công suất tức thời qua 2 oát kế chính là công suất tức thời của ba pha, vậy cong suất tác dụng của ba pha bằng công suất tác dụng qua 2 oát ké

$$
P=P_{1}+P_{2}
$$

Phương pháp 2 oát kế được dùng cho mạch 3 pha 3 day đới xứng và không đơi xứng, song cần chú ý rà̀ng, khi đã mấc dây đúng cực tính như hình vẽ, oát kế nào có kim quay ngược, ta phải đởi chiếu cuộn dây dòng điện (hoạ̣c cuộn điện áp) của oát kế đó và lấy giá trị P âm. Ví dụ kim oát ké̉ 2 quay ngược thì:

$$
\mathrm{P}=\mathrm{P}_{1}-\mathrm{P}_{2}
$$

4.8. CÁCH NỐI NGUỒN VÀ TẢI TRONG MẠCH BA PHA

Nguờn điện và tải ba pha đều có thể nơi hình sao hoạ̃c hình tam giác, song tùy thuộc vào điện áp định mức của thiết bị, của mạng điện và các yêu cầu kĩ thuạt ta sẻ chọn cách nơi dây phù hợp.

1. Cách nối nguồn điện

Các nguồn điện dùng trong sinh hoạt láy từ day quấn 3 pha stato máy phát điện, hoặc lây từ dây quấn 3 pha thứ cấp của máy biễn áp. Các dây quấn này thường nới hình sao cơ dây trung tính. Nơi như vạy có ưu điểm là có thé cung cấp 2 điẹn áp khác nhau: điẹn áp pha và điẹn áp dây (hình 4.21). Trên thé giới tờn tại 2 loại mạng điện $380 \mathrm{~V} / 220 \mathrm{~V}$ ($\mathrm{U}_{\mathrm{d}}=380 \mathrm{~V} ; \mathrm{U}_{\mathrm{p}}=220 \mathrm{~V}$) và mạng điện $220 \mathrm{~V} / 127 \mathrm{~V}\left(\mathrm{U}_{\mathrm{d}}=220 \mathrm{~V}, \mathrm{U}_{\mathrm{p}}=127 \mathrm{~V}\right)$. Hiện tại ở nước ta sử dụng mạng điẹn $380 \mathrm{~V} / 220 \mathrm{~V}$.

Hinh 4.2I

2. Cách nối động cơ điện ba pha

Mỗi động cơ điện ba pha gồm co 3 day quấn pha. Khi thiết ké ché tạo người ta đã quỳ định điẹn áp định mức cho môi day quấn. Động co làm việc phải đúng vơi điện áp quy định ấy. Ví dụ động cơ ba pha cơ điện áp định mức cho mỡi pha dây quấn là $220 \mathrm{~V}\left(\mathrm{U}_{\mathrm{p}}=220 \mathrm{~V}\right)$, trên nhãn của động cơ ghi là Δ / Y $220 \mathrm{~V} / 380 \mathrm{~V}$.

Nếu động cơ làm việc ở mạng điện co $\mathrm{U}_{\mathrm{d}}=380 \mathrm{~V}$, thì động cơ phải đấu hình sao (hình 4.22a), điẹn áp đặt lên mơii dây quấn pha là $\mathrm{U}_{\mathrm{p}}=\frac{380}{\sqrt{3}}=220 \mathrm{~V}$ bằng đúng điện áp quy định. Nếu đọng cơ ấy làm việc ở mạng điẹn có $\mathrm{U}_{\mathrm{d}}=220 \mathrm{~V}$, thì đọng cơ phải được nới hình tam giác (hình 4.22 b), lúc đó điẹn áp đặt lên mởi dây quấn pha cảa động cơ bằng điện áp dây 220 V , bằng đưng điện áp quy định.

Hinh 4.22
Để thuận tiẹn cho việc đấu động cơ, người ta ký hiệu 6 đầu dây của 3 dây quấn động cơ AX, BY, CZ nhur hình 4.23a và đưa 6 đầu dây nối ra 6 bu long ($1,2 \ldots 6$) ớ hộp nôi dây trên vỏ dộng cơ (hình 4.23b).

Việc đấu day thực hiện bằng cách thay đởi vị trí cầu nới giữa các bu lông này thành hình sao (hình 4.24 a) hoạ̣c hình tam giác (hinh 4.24b).

b)

Hinh 4.23

3. Cách nối các tải một pha

Các tải mợt pha là các động cơ điện mợt pha, các lò điện mọt pha, các đò dùng điẹn gia đình (đèn điẹn, quạt điẹn, tủ lạnh...) trên nhãn các thiét bị này có ghi trị so điẹn áp định mức.

Khi sử dụng,

Hinh 4.24 các thiết bị này được
đấu giữa dây pha và day trung tính (hình 4.25), vì thế các tải một pha phải có điện áp định mức bằng điẹn áp pha của mạng điẹn.

Khi thiết kế mạng điện, người ta có gắng phân bơ đều các tải một pha cho cả ba pha, song do việc sử dụng khơng đồng đểu, nên đây là mạch 3 pha không đб́i xứng.

Nhờ co dây trung tính nên mặc dù tải không đới xứng, điện áp đặt lên các thiết bị hấu như giữ được bình thường, không vượt quá điẹn áp pha và khi pha nào bị hỏng chỉ có pha ấy mất điện, các thiết bị nới với pha ấy không làm việc,

Hinh 4.25 còn các pha khác vẫn bình thường.

CÂU HỎI ÔN TẬP VÀ BÀI TẬP

4.1. Nếu những ưưđđ̛̛̉m của mạch điện ba pha.
4.2. Các đạ̣c điổm cč̉a mạch điện ba pha đối xứng
4.3. Định nghïa điện áp pha, điện áp dây ; dơng điện pha, dơng điện dây và quan hệ giữa chúng khi nới sao và nới tam giác.
4.4. Trình bày các bước giải mạch điện ba pha đới xứng
4.5. Các biêu thức của cơng suắt P, Q, S trong mach ba pha đới xứng.
4.6. Vai trò của dây trưng tính trong mạch điện ba pha tải không đới xứng.
4.7. Mờt nguớn điện ba pha nờ sao, $U_{p n}=120 \mathrm{~V}$ cung cấp điện cho tải nới sao có day trung tính. Tải có điện trở pha $R_{p}=180 \Omega$.

Tính $U_{d}, I_{d}, I_{p}, I_{0}, P$ của mạch 3 pha.
Đáp só : $U_{d}=207,84 \mathrm{~V} ; I_{d}=I_{p}=667 \mathrm{~mA} ; I_{0}=0 ; P=240 \mathrm{~W}$.
4.8. Một nguốn điện 3 pha đới xứng đá́u sao cung cấp điện cho tẩi ba pha đối xứng đắu tam giác. Blé̛t dòng điện pha cửa nguớn $I_{\mathrm{p}}=17,32 \mathrm{~A}$, đlện trở mổi pha của tải $R_{p}=38 \Omega$. Tinh điện áp pha của nguổn và cớng suắt $P_{\text {. của nguồn cung cáp cho tâi }}$ 3 pha.

Đ悗 sठ́: $U_{p n}=220 \mathrm{~V} ; P_{n}=P_{t}=11400 \mathrm{~W}$.
4.9. Một tải ba pha đới xứng đấu hình tam giác, biết $R_{p}=15 \Omega ; X_{p}=6 \Omega$, đá́u vào mạng điẹ̉n 3 pha $U_{d}=380 \mathrm{~V}$. Tính I_{p}, I_{d}, P, Q của tải.

Đáp só: $I_{p}=23,52 A ; I_{d}=40,74 A ; P=24893,5 W ; Q=9957,4 A$.
4.10. Mợt đợng co điện 3 pha đấu sao, đấu vào mạng 3 pha $U_{d}=380 \mathrm{~V}$. biế dòng điện dây $\mathrm{I}_{\mathrm{d}}=26,81 \mathrm{~A}$; hệ sớ công suất $\cos \varphi=0,85$. Tính dòng diện pha củ̉ động cơ, cờng suất điện động cơ tiêu thụ.

Dáp só : $I_{p}=I_{d}=26,81 \mathrm{~A}$; $P_{\text {diten }}=15 \mathrm{~kW}$.
4.11. Mợt động cơ không đờng bọ có sớ liệu định mức sau : cơng suắt ca địn mức $P_{\mathrm{dm}}=14 \mathrm{~kW}$; hiệu suát $\eta_{\mathrm{cm}}=0,88$; hệ só công suất $\cos \varphi_{\mathrm{dm}}=0,89 ; \mathrm{Y} / \Delta$ $380 \mathrm{~V} / 220 \mathrm{~V}$. Người ta đấu động co vào mạ̀ng $220 \mathrm{~V} / 127 \mathrm{~V}$.
a) Xác định cách đấu đây động co
b) Tinh công suắt điện đợng cơ tiêu thụ khi định mức.
c) Tinh dòng điện đây I_{d} và döng điện pha I_{p} của động co.

Đáp sớ: a) Động cơ nới hìhh tam giác Δ
b) $P_{\text {diitn }}=\frac{P_{\mathrm{cd}}}{\eta_{d \mathrm{~m}}}=15,9 \mathrm{~kW}$
c) $t_{d}=46,9 \mathrm{~A} ; t_{p}=27 \mathrm{~A}$
4.12. Mợt đợng cơ điẹ̉n đáu hình sao, làm việc với mạng điện có $U_{d}=380 \mathrm{~V}$; đợng cơ tiêu thụ cởng suất điện $20 \mathrm{~kW} ; \cos \varphi=0,885$. Tînh cóng suất phản kháng của động cơ tièu thụ, dơng điện dây I_{d} và dòng điện pha của động co.

Đáp số: $Q=10,52 \mathrm{kVAr} ; I_{p}=I_{d}=34,33 \mathrm{~A}$.
4.13. Một mạng điện 3 pha 4 dây $380 \mathrm{~V} / 220 \mathrm{~V}$ cung cấp điện cho 60 đèn phóng điện cao áp công suắt đèn $P=250 \mathrm{~W}$, công suất chấn lưu 25 W , hê̂ số công suất $\cos \varphi=$ 0,85 (các đèn đả được bù), điộn áp đèn $U_{d m}=220 \mathrm{~V}$.

Đèn được ph phán đếu cho 3 pha.
a) Xác đụnh dòng điện dây khi cả 3 pha đều làm việc bình thường. Tính dòng điện trong dáy trung tinh I_{0}.
b) Khi đèn pha A bị cất điện. Xác định dòng điện dây I_{B}, I_{C}, dòng điện I_{0} trong dảy trung tính khi các đèn pha B và pha C làm việc bình thường.
c)Khi đèn pha A và đèn pha B bị căt điện. Xác định dòng điện I_{C} và dòng điện I_{0} trong dáy trung tính khi đèn pha C làm việc bình thường.

$$
\begin{aligned}
& \text { Đáp só: a) } I_{A}=I_{B}=I_{C}=I_{d}=29,4 \mathrm{~A} \\
& I_{0}=0 \\
& \text { b) } I_{B}=I_{C}=29,4 A \text { khong } \alpha 6 i \\
& t_{0}=29,4 \mathrm{~A} \\
& \text { c) } I_{c}=29,4 A \text { không } 08 \% \\
& I_{0}=29,4 \mathrm{~A}
\end{aligned}
$$

4.14. Một mạng điện 3 pha 4 dây $380 \mathrm{~V} / 220 \mathrm{~V}$, các tảl mợt pha nới giữa dảy pha và dây trung tính. Tảl pha A và pha B thuẩn trở $R_{A}=R_{B}=10 \Omega$; tải pha C là cuộn dây $R_{c}=$ $5 \Omega ; X_{L}=8,666 \Omega$. Tính dòng điện các pha I_{A}, I_{B}, I_{C} và dòng điện trong dåy trung tính I_{C}.

Đáp só́: $I_{A}=I_{B}=I_{C}=22 A ; \quad I_{o}=22 A$

Churong 5

CHİNH LƯU VÀ ỚN ÁP

5.1. ĐẠI CƯƠNG VỀ CÁC BỘ CHîNH LUU

Các bộ chinh lưu biến đởi điện áp xoay chiều có trị sơ hiệu dụng U_{1}, tần sơ f_{1} thành điện áp một chiều U_{o} cung cấp cho các tải.

Hình 5.1 là sơ đờ khợi của một bợ chinh lưu.

Hinh 5.1. So 06 khơi của bọ chỉnh lưu
Phân tử cơ bản nhất trong một bộ chỉnh lưu là các linh kiện điện tử cơng suất. Chúng dược chế tạo từ các chuyển tiếp bán dả̃n pn cho phép chỉ dẫn điện theo một chiều khi bán dẩn p có thế dương so với bán đẫn n . Đó là các điớt bán dẳn. Ngoài ra người ta còn chế tạo linh kiện bán dẵn có điếu khiễn gọi là tiristo. Khi đưa xung điều khiển vào cực điều khiển G tiristo sẽ chuyển từ trạng thái khoá sang trạng thái đẫn. Sau khi tiristo đã mở cực điều khiển G khơng còn tác dụng nữa. Để tiristo tiếp tục hoạt động, người ta phải đưa các xung mồi vào G ở các chu kỳ tiêp theo. Hình 5.2. là sơ đồ ký hiệu của tiristo.

Nói chung điện áp sau chỉnh lưu chưa phải là điện áp mợt chiều lý tưởng mà vẫn tồn tại các thành phấn sóng hài bậc cao. Để giải quyết người ta thường sử dụng bộ lọc.

Hinh 5.2. Ký hiẹu của tiristo.

Tải của các bọ chỉnh lưu thường có tính chất điẹn cảm do đó trong nửa chu kỳ chỉnh lưu không dẫn điện, năng lượng
từ trường tích luỹ trong điện cảm gây kho khăn trong việc chuyển mach của các linh kiện bán dẵn công suất. Để khắc phục hiện tượng này người ta sử dụng một điớt thoát nới song song ngược với tải nhằm khép mạch dòng điện tải ở nửa chu kỳ dòng điện bị khoá.

Các bộ chỉnh lưu được phân loại theo phương pháp điều chinh, theo dạng sóng và các loại sơ đó chinh lưu.

Theo phương pháp điều chỉnh ta phân các bộ chinh lưu thành:

- Bọ chỉnh lưu không điều chỉnh, điện áp một chiều cớ định. Đây là bộ chỉnh lưu sử dụng toàn điót.
- Bộ chỉnh lưu có điều chỉnh, điện áp một chiều có thể điểu chỉnh từ 0 đến định mức. Đây là bộ chinh lưu sử dụng toàn tiristo.
- Bọ chỉnh lưu bán điều chỉnh, điện áp một chiều có thể điều chỉnh được. Đay là bộ chỉnh lưu gồm cả điớt và tiristo và mạch điều khiển đơn giản hơn.

Theo dạng sóng điện áp chỉnh lưu và loại sơ đồ chỉnh lưu ta phân thành: chỉnh lưu một nửa chu kỳ, chỉnh lưu hai nửa chu kỳ, chỉnh lưu cấu một pha, chỉnh lưu cấu ba pha... Chi tiét hơn về các sơ đô chỉnh lưu sẽ giới thiệu ở các mục sau.

Các bộ chinh lưu được ứng dụng trong các lỉnh vực:

- Nguồn nưoi cho các linh kiện điện tử ;
- Nguồn một chiều cung cấp cho động cơ điện một chiều, nguồn kích từ cho các loại máy điẹn và khí cụ điẹn ;
- Trong công nghiệp điện hoá như: điện phân, mạ đúc điện, cần nguồn một chiểu điện áp tương đói thắp, dòng điẹn lớn.

Trong chương này sẽ giới thiệu tính năng của các sơ đồ chỉnh lưu điển hình, dạng sóng điện áp chỉnh lưu và các điểu kiện lựa chọn các phần tử điẹn tử công suất trong các sơ đồ chỉnh lưu.

5.2. CHÎ̉NH LUU MỘT NỬA CHU KY

Sơ đồ chỉnh lưu một nửa chu kỳ (chỉnh lưu nửa sóng) khong điều chỉnh gồm nguồn xoay chiều, mộ điớt và tải cho trên hình 5.3 a .

Giả thiét bỏ qua điện áp rơi trên điớt khi dắn điẹn dạng sóng điện áp nguồn, điện áp mộ chiều trên tải, dòng điện qua tải khi tải thuần trở và điện áp trên điot được vê trên hình 5.3b.

Khi điện áp nguờn dương, điớt $Đ$ dã̃n điẹn. Khi điện áp nguồn âm điớt $Đ$ bị khoá, dòng điẹn bị triệt tiêu và toàn bộ điẹn áp nguờn đạt trên điớt. Như vạy điện áp và dòng điẹn qua tải chỉ bao gồm nửa sóng dương của hình sin. Trị sớ trung bình của điện áp chỉnh lưu là:

$$
U_{t b}=\frac{1}{2 \pi} \int_{0}^{\pi} U_{m} \sin \omega \mathrm{t} \cdot \mathrm{~d} \omega \mathrm{t}=\frac{\mathrm{U}_{\mathrm{m}}}{\pi}
$$

Điện áp ngược cực đại đặt lên điớt khi nó bị khoá là $\mathrm{U}_{\mathrm{ng} \text { max }}=\mathrm{U}_{\mathrm{m}}$. Nếu thay the điớt bằng tiristo ta có chinh lưu co điều khiển. Sơ đô chỉnh lưu gồm nguồn xoay chiều, mọt tiristo với mạch nới, một điớt thoát dẻ ngăn điện áp chỉnh lưu đởi chiều được cho tren hình 5.4a. Tiristo chỉ dẫn điện khi có điẹn áp dương đạt vào tiristo U_{T} và đưa xung điều khiển vào cực mồi G. Khi đó tiristo bắt đầu dẩn và bị tuễ một góc mở α. Trên hình 5.4b vẽ dạng sóng điện áp nguồn $U_{n g}$,xung mòi i_{g}, điện áp trên tải U_{t} và điẹn áp trên tiristo U_{T}.

Hinh 5.3a. Chinh lưu mọt nữa chu kỳ.

Hinh 5.3b. Dạng sóng điện áp và dòng diện trên các phấn tử.

So với điện áp nguôn U_{n}, điẹ̣n áp trên tải U_{t} bị trể mợt góc α. Điện áp chỉnh lưu trên tải bằng :

$$
\begin{equation*}
\mathrm{U}_{\mathrm{tb}}=\frac{1}{2 \pi} \int_{\alpha}^{\pi} \mathrm{U}_{\mathrm{m}} \sin \omega \mathrm{t} \cdot \mathrm{~d} \omega \mathrm{t}=\frac{\mathrm{U}_{\mathrm{m}}}{2 \pi}(1+\cos \alpha) \tag{5-2}
\end{equation*}
$$

Ta nhận tháy điẹn áp trung bình trên tải phụ thuộc vào góc mở α. Khi $\alpha=0$, tiristo dā̃n như điớt. Khi α càng lớn điện áp trên tải càng nhỏ và khi $\alpha=\pi$ điẹn áp trên tải bằng khong. Điện áp ngược cực đại đạt lên tiristo bằng điẹn áp cực đại của nguồn :

$$
\mathrm{U}_{\mathrm{ng}}=\mathrm{U}_{\max }
$$

Hinh 5.4a. Sa đồ chỉnh lưu mọt nửa chu kỳ dùng tiristo

Hinh 5.4b. Dạng sóng điện áp trên các phẩn từ
Ví dụ 1: Bộ chinh lưu mợt pha một nửa chu kỳ trên hình 5.4 c cung cáp cho tảj điẹn cảm có dòng điện 15 A , điện áp nguồn xoay chiều $\mathrm{U}=240 \mathrm{~V}$.

Tính điện áp trung bình trên tải ứng với các gơc mở $\alpha=45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}$.
Tính các thông só chọn tiristo và điớt thoát .

Lài giải:

Day là sơ dó chỉnh lưu mọt nửa chu kỳ có diếu khiến, điện áp trung bình trên tài là:

$$
\mathrm{U}_{\mathrm{m}}=\frac{\mathrm{U}_{\mathrm{m}}}{2 \pi}(1+\cos \alpha)
$$

Vớ $\mathrm{U}_{\mathrm{m}}=\sqrt{2} \mathrm{U}=\sqrt{2} .240=340 \mathrm{~V}$.
Điện âp ngược cực đại của tiristo là:

$$
\mathrm{U}_{\mathrm{ng}}=\mathrm{U}_{\mathrm{m}}=340 \mathrm{~V}
$$

Hinh 5.4c
Khi $\alpha=0$ khoảng dăn của tiristo cực dại. Trị so hiệu dụng của dòng điẹn qua tiristo là:

$$
I=\sqrt{\frac{15^{2}+0^{2}}{2}}=10,6 \mathrm{~A}
$$

Điẹn áp ngược cực đại của diơt thoát là $\mathrm{U}_{\mathrm{ng}}=\mathrm{U}_{\mathrm{m}}=340 \mathrm{~V}$. Khi $\alpha=180^{\circ}$ diót thoát dẩn điẹn gần như liên tục với dòng điẹn 15A.

Điẹn áp trên tải theo góc mở là:

α	0°	45°	90°	135°	180°
$\mathrm{U}_{4 \mathrm{~b}}(\mathrm{~V})$	108	92	54	16	0

5.3. CHİNH LUU HAI NỬA CHU KỲ

Chỉnh lưu hai nửa chu kỳ còn gọi là chỉnh lưu toàn sóng thường sử dụng hai loại sơ đô :

1. So đó máy biến áp có điểm giữa

Sơ đồ trên hình 5.5 a gồm một máy biến áp cuộn thứ cấp gồm hai nửa có điểm giữa N , hai điớt (chỉnh lưu không điều chỉnh) hoặc hai tiristo (chỉnh lưu có điếu chỉnh). Hai thành phần điện áp U_{1} và U_{2} ngược chiều đơi với điểm giữa N .

Khị U_{1} dương thì U_{2} âm, điót $Đ_{1}$ dẩn và cung cấp dòng điện cho tải còn điớt D_{2} bị khoá. Khi U_{1} âm thì U_{2} dương, điớt D_{2} dẫn sẽ cung cấp điện cho tải, điớt $Ð_{1}$ bị khoá. Như vậy trong cả hai nửa chu kỳ đều có một điớt dẫn. Điẹn áp chỉnh lưu trung bình gấp đôi so với chinh lưu mợt nửa chu kỳ.

$$
\begin{equation*}
U_{t b}=\frac{U_{m}}{2 \pi} \tag{5-3}
\end{equation*}
$$

Khi một điớt bị khoá, điện áp ngược cực đại đặt lên nó bằng hai lần điện áp cực đại của dây quấn thứ cấp máy biến áp:

$$
\cdot U_{n g}=2 U_{m}
$$

Hình 5.5b trình bày dạng sóng của điện áp nguồn, điện áp trên tảa và điẹ̣n áp trền điốt.

Hinh 5.5a. Sơ đờ chinh lưu hai nửa chu kỳ, máy biến áp có điếm giữa.

Hinh 5.5b. Dạng sóng điẹn áp

2. Chỉnh lưu cầu một pha

Sơ đồ mạch chỉnh lưu cầu mọt pha gồm nguồn xoay chiều, 4 điớt nói theo sơ đô cầu vạ̀ tải mắc ở một đường chéo của cẩu được cho trên hình 5.6a.

Khi điện áp nguồn U_{n} âm hai điốt \oplus_{3} và \oplus_{4} dān còn $Ð_{1}$ và $Ð_{2}$ bị khoá.
Như vậy đây là chỉnh lưu hai nửa chu kỳ. Điện áp chỉnh lưu trung bình đặt trền tải là:

$$
\begin{equation*}
\mathrm{U}_{\mathrm{tb}}=\frac{2 \mathrm{U}_{\mathrm{m}}}{\pi} \tag{5-4}
\end{equation*}
$$

Trong môi nửa chu kỳ có hai điốt đồng thời dã̃n điện do đó điện áp ngược cực đại đạt lên môi điớt chỉ bằng điện áp cực đại của nguồn do đó: $\mathrm{U}_{\mathrm{ng}}=\mathrm{U}_{\mathrm{m}}$.

Đay là ưu điểm của sơ đồ cẩu so với so đờ chỉnh lưu hai nửa chu kỳ máy biến áp điểm giữa, nghĩa là trong sơ đồ cầu các điớt có thẻ chịu được điện
áp ngược lớn hơn. Tuy nhiên sơ đồ cẩu tốn nhiều điớt hơn. Hình 5.6b trình bày dạng sóng điện áp trên các phần tử.

Hinh 5.6a. So đó chỉnh lưu cáu mott pha.

Ví dụ 2: Cho sơ đơ chỉnh lưu cầu hình 5.6a. Nếu muón điện áp chỉnh lưu $\mathrm{U}_{0}=15 \mathrm{~V}$. thì điện áp thứ cấp cực đại là bao nhiêu?. .

Giài :

Đây là chỉnh lưu hai nửa chu kỳ nên trị sớ trung bình của điện áp chỉnh lưu là:

$$
\mathrm{U}_{0}=\frac{2 \mathrm{U}_{\mathrm{m}}}{\pi}
$$

Suy ra: $\mathrm{U}_{\mathrm{m}}=\frac{2}{\pi} \mathrm{U}_{0}=1,57.15=23,6 \mathrm{~V}$

5.4. CHİNH LUUU BA PHA HÌNH TIA

Sơ đồ chỉnh lưu ba pha hình tia gồm các dây quấn máy biến áp, môi pha nối với một điớt. Tải nối giữa trung tính của nguồṇ và điểm nối chung của các điớt và được trình bảy trên hình 5.7a.

Ở mỗi thời điểm chỉ có một điớt dẫn điện là điốt nới với pha có trị só tức thời dương lớn nhất. Khi U_{A} là pha có trị sớ điện áp dương lớn nhất thì đị̂́t D_{1} dẳn điện. Sau một phần ba chu kỳ U_{B} trở nên dương hơn thì dòng điện chuyển từ điốt $Ð_{1}$ sang $Ð_{2}$, lúc này $Ð_{1}$ bị khoá vì anôt của nó có điện thế âm hơn catôt. Sau một phần ba chu kỳ đến lượt điớt D_{3} dẫn còn hai điớt kia bị khoá. Điẹn áp chỉnh lưu trung bình trên tải là :

$$
\begin{equation*}
U_{t b}=\frac{3 \sqrt{3}}{2 \pi} U_{m} \tag{5-5}
\end{equation*}
$$

Điện áp ngược cực đại đặt trên mōi điốt là: $\mathrm{U}_{\mathrm{ng}}=\sqrt{3} \mathrm{U}_{\mathrm{m}}$.
Ở đây U_{m} là điện áp pha cực đại çủa thứ cá́p máy biến áp.
Quan sát dạng sóng điện áp chỉnh lưu trên tải trên hình 5.7 b. ta thấy điện áp chỉnh lưu khá bầng phả̉ng.

Hinh 5.7a. So đồ chỉnh iun ba pha hinh tia

Ví dụ 3. Sơ đồ chinh lưu hình tia sứ dụng tiristo cho trên hình 5.7 c .

Biết điện áp pha của nguồn $\mathrm{U}=150 \mathrm{~V}$.

1. Tìm dạng sóng điện áp trên tài.
2. Xác định diện áp trung bình trên tải khi góc mở $\alpha=0^{\circ}$. $30^{\circ}, 60^{\circ}, 90^{\circ}$.

Cho biết điện áp rơi trễn môi tiristo là $1,5 \mathrm{~V}$ và dòng diện tải không đởi.

Giải.

Dạng sóng điện áp chinh lưu được cho trên hình 5.7b. Góc mở α tính từ thời điêm giao nhau của các điện áp pha. Các xung diều khiển được vē trên hình 5.7 d .

Hinh 5.7b. Dạng sóng điện áp chinh lưu ba pha hình tia

Hinh 5-7c

Trị sớ trung bình của điẹn áp chinh lưu:

$$
\mathrm{U}_{\mathrm{tb}}=\frac{3 \sqrt{3}}{2 \pi} \cdot \sqrt{2} \mathrm{U} \cos \alpha-1,5
$$

Từ đó suy ra:

α	0^{0}	30^{0}	.	60°	90°
$\mathrm{U}_{10}(\mathrm{~V})$	173.9	150.4	86.2	0	

5.5. CHỈNH LUU CẦU BA PHA

Sơ đồ chỉnh lưu cầu 3 pha gồm nguồn ̀̉a pha $\mathrm{U}_{\mathrm{A}}, \mathrm{U}_{\mathrm{B}}, \mathrm{U}_{\mathrm{C}}$ và 6 điớt nới theo sơ đồ cầu hình 5.8 a . Trong mỗi khoảng ihời gian khi điện áp nguỗn trở nên dương nhất có 2 điớt đồng thời dẫn điện. Dạng sóng điiẹn áp chỉnh lưu câu ba pha được cho trên hình 5.8 b.

Hình 5.8a. Sơ đó chỉnh lưu cấu 3 pha. Hinh $5.8 b$. Dạng sóng diẹn áp trên các phần từ.
So với sơ đồ hình tia điện áp chỉnh lưu bằng phả̉ng hơn, điện áp chỉnh lưu trung bình gấp đơi so với chỉnh lưu ba pha hình tia :

$$
\begin{equation*}
U_{t b}=\frac{3}{\pi} \sqrt{3} U_{m} \tag{5-6}
\end{equation*}
$$

Điện áp ngược cực đại đặt lên môi điớt là :

$$
\mathrm{U}_{\mathrm{ng}}=\sqrt{3} \mathrm{U}_{\mathrm{m}}
$$

5.6. CÁC BỘ Ổ ĐİNH ĐIỆN ÁP

1. Khái niệm chung

Các bợ ơn áp là thiết bị điện tự động duy trì điện áp ra không đởi khi điẹn áp vào biến thiên trong phạm vi nhất định.

Chắt lượng bợ ởn áp được đánh giá bà̀ng hệ só ổn định :

$$
\mathrm{K}=\frac{\Delta \mathrm{U}_{2} / \mathrm{U}_{2}}{\Delta \mathrm{U}_{1} / \mathrm{U}_{1}}
$$

Trong đó: $\Delta \mathrm{U}_{1}, \Delta \mathrm{U}_{2}$ là biến thiên của điện áp vào và điện áp ra;

$$
\mathrm{U}_{1}, \mathrm{U}_{2} \text { là điện áp vào và điẹn áp ra. }
$$

Có nhiều loại ởn áp với nguyên lý rất khác sau. Sau đây xin giới thiệu nguyên lý làm việc của các bộ ởn áp thông dụng.

2. Ổn áp săt tù

Ổn áp sắt từ có sơ đờ nguyên ly cho trên hình 5.9 a . Ổn áp gồm hai cuộn kháng, một cuộn tuyến tính W_{1} và một cuộn bão hòa W_{2} mắc nới tiếp với nhau.

Điẹn áp ra U_{2} láy trên cuọn bão hòa. Đạ̣c tính Vôn-Ampe của ớn áp cho trên hình 5.9b: 1 là đạ̣c tính Vôn-Ampe của cuộn kháng tuyến tính; 2 là đạ̣c tính Vơn-Ampe của cuộn bão hòa; 3 là đặc tính Vôn-Ampe của hai cuộn mắc nơi tiếp.

a)

Hinh 5.9. Ốn áp sắt từ.
Ta nhận thắy điẹn áp vào biến thiên lơn nhưng vì đặc tính bão hòa của cuọn day lỗi thép nèn điện áp ra biến thiên nhỏ. Nhược điếm của ởn áp sất từ là tớn nhiều nguyen liệu, điện áp ra bị méo.
3. Ổn áp kiểu động cơ chấp hành

Sơ đồ nguyên lý ơn áp của kiểu động cơ chấp hành cho trên hình 5.10.

Đay là sơ đô máy biến áp tự ngả̃u trong đó con chạy S được điều khiển bằng động cơ chấp hành nhằm thay đởi sơ vòng dây thứ cấp khi điện áp sơ cấp thay đổi. Điện áp ra U_{2} được lấy mẫu và so sánh với điện áp chuẩn rồi đưa vào bộ khuếch đại, lấy tín hiệu điều khiển động cơ một chiếu.

Động cơ chấp hành một chiều quay sẽ kéo con chạy của biến áp tự ngã̉u nhằm duy trì điện áp U_{2} không đổi.

Hinh 5.10. Ổn áp kiểu động cơ cháp hành.

CÂU HỎ̇I ÔN TẬP

5.1. Vai trò của điốt cơng suá́t; tiristo, điớt thoát và bộ lọc trong các bộ chỉnh Iưu?
5.2.Các so đồ chỉnh lưu co bản, điện áp trung bình và điện áp ngược trén linh kiện điện tử công suất trong các so đổ néu trên ?
5.3. So sánh các đọ̣c tính của các so đồ chỉnh lưu, từ đó suy ra phạm vi ứng dụng của chúng ?

Chutong 6

CÁC THIẾT B!̣ ĐÓNG CẤT VÀ BẢO VỆ MẠCH ĐIỆN

6.1. ROLE

Rơle là thiết bị điện đùng để đóng cắt mạch điện điều khiển, bảo vệ và điều khiển sự ̣̣̂m việc của mạch điện động lực.

Các bộ phận (các khơi) chính của rơle là: cơ cấu tiếp thu, cơ cáu trung gian, cơ cấu chấp hành. Ví dụ rơle điện từ có các bộ phận: cuộn dây (cơ cấu tiêp thu), mạch từ nam châm điẹn (cơ cá̛u trung gian), hệ thớng các tiếp điểm (cơ cáu cháp hành).

Ngày nay do sự phát triển của công nghệ, ngoài rơle điện cơ, rơle nhiệt, rơle từ, các loại role điện tử, role sớ vơi những ưu điểm nỏi bật đã phát triển và sử dụng nhiếu trong các ngành của sản xuất và đời sớng.

1. Role điện từ

Rơle điẹn từ là loại rơle điện cơ, làm việc theo nguyen lý điện từ. Xét một rơle điện từ có cấu tạo như hình 6.1:

Khi cho dòng diện i đi vào cuộn dây 2 của nam châm điện 1 , thì nắp 3 của nam châm điẹn sẽ chịu một lực hút điện từ $F_{\text {da }}$. Khì đòng diện i lớn

Hinh 6.1. hơn dờng điẹn tác động I_{td}, thỉ lực điện từ F_{dt} lớn hơn lực $\mathrm{F}_{10 \text { xo }}$ của lò xo 4 , làm đóng tiếp điểm 5 . Khi dòng điện i nhỏ hơn dờng điện trờ về I_{tv}, lực $\mathrm{F}_{\mathrm{lo} \text { xo }}$ lớn hơn lực điện từ F_{dt}, rơle nhả, cắt tiếp điểm 5 .

Nhược điểm của rơle điẹn từ là cơng suất tác đọng tương đơi lớn, đọ nhạy tháp. Hiện nay người ta sử dụng vạt liệu sất từ mới để tăng độ nhạy cuà role.

2. Role nhiệt

Rơle nhiẹt dùng để bảo vệ động co điẹn và mạch điẹn khỏi bị quá tải. Role nhiẹt khong tác động tức thời theo trị sơ dòng diẹnn, vì cân có thời gian để phát nóng. Thơi gian làm viẹc khoảng và̀i giày đên vài phút.

Role nhiẹt có nguyên lý làm việc dựa vào tác dụng nhiẹt của dòng điện. Loại rơle nhiệt thương gạ̣p có phân từ cơ bản là phién kim loại kép, cáu tạo từ hai tám kim loại, mọt tấm có hệ so giãn nở bé và một tám có hệ sơ giẵn nở lớn. Khi đớt nóng do dòng điẹn I , có thể dùng trực tiếp cho dòng điẹñ đi qua, hoạ̣c day diện trở bao quanh.

Hình 6.2 là so đờ cáu tạo rơle nhiẹt. Bộ phạn đớt nông 1 đáu nơi tiêp vơi mạch điẹn chính của thiét bị cân bảo vệ (tự dọ̣ng cát diẹn). Khi dòng điẹn chạy trong mạch điẹn tăng lèn quá mức quy định (dộng co điện bị quá taii) thà nhiẹt lượng toả ra làm cho phién kim loai kép 3 cong len phía trên (vế phía kim loại có hẹ sơ giăn nở nhò). Nhờ lự kéo của lò xo 5 , dòn bảy 4 sẽ quay và mờ tiêp điêm 2, làm cho mạch điẹn

Hinh 6.2. tự đọng cát điện. Khi bọ phận đớt nơng nguọi đi, thanh kim loại kêp hêt cong, ân nút 6 là có thể đưa rơle nhiẹt vế vị trí cũ, tiêp điêm 2 dóng.

3. Rofe tương tư - Role ky thuạt só

Các loại rofle điẹn-cơ có nhược điếm là tác đọng chạ̣m và kém chính xác nên từ những năm 70 đén năm 90 các rơle điện-cơ được cải tiên theo huớng điẹn tử hoá, thay thế các cơ cáu đo, cơ cấu so nguỡng bằng các mạch điẹn từ và vi mach bán dẫn. Đên khoảng những năm 90 người ta đưa kỹ thuạt vi xử lý, vi điêu khiến vào rơle, các tính năng của rơle càng ưu viẹt hơn.

Role tương tự có đặc trưng là các thông so vào, ra của rơle như dòng điẹn, điẹn áp, gơc lệch pha, cơng suất... là các đại lượng liên tục (analog). Tín hiẹu này được so sônh vời một hay nhiêu đại lượng đâu vào có giá trị chuẩn để cho tín hiẹu đâu ra. Cáu truíc rơle gồm các khới sau: khơi tiếp thu, khơi thực hiẹn, khơi trì hoãn và khới chinh định.

Roule kỹ thuật sớ có đặc điểm là tín hiẹu xử ly bên trong của rơle ở dạng só (dạng nhị phân 0,1). Tín hiệu đâu vào được chuyễn sang tín hiệu sơ đẻ̉ điểu khiển tín hiệu ra. Kết cấu phần cứng và phẫn mêm của các kiểu rơle ky̆ thuăt sơ của các hãng khác nhau thường có những nét đặc biệt riêng, khơng giơng nhau.

6.2. CẦU DAO

Câu đao là loại thiết bị điện dùng để đóng, cắt dòng điện bằng tay, đơn giản nhất, được sử dưng trong mạch điện có điẹn áp 220 V điẹn một chiếu và 380 V diẹn xoay chiểu.

Cầu dao thuờng dùng để đóng cắt mạch điện công suất nhỏ và khi làm viẹ̣c khong phài đóng cắt nhiều lânn. Nêu điẹn áp mạch điện cao hơn hoặc mạch diện có công suất trung bình và lớn thì cấu dao làm nhiẹm vụ cách li hoặc chỉ đóng căt khi không tải. Sở dĩ như vạy vì khi cắt mạch, hồ quang sinh ra sẽ̃ rất lơn, tiép xúc sẽ bị phá huỷ trong một thời gian ngắn dănn đên phát sinh hờ quang giữa các phà, gây nguy hiểm cho ngươi thao tác và hỏng thiết bị.
 chiếu dài luỡi dao phải dủ lớn (lớn hơn 50 cm) và để an toàn lúc đóng căt, cẩn có biẹn phâp dạp tát hớ quang, tớc độ di chuyển lưới dao tiêp xúc càng nhanh, thời gian dạp tat́t hố quang càng ngắn, vì thế người ta thương làm thêm lưỡi dao phụ có lò xo bạt nhanh ở các cấu dao có dòng điẹn một chiêu lớn hon 30A.

Hinh 6.3. Cấu tạo và ky hiệu cầu dao.

1. tiếp điềm động (lưỡi đao); 2. tiếp điếm tînh; 3. đế cách điện.

Theo kêt cá́u người ta phan ra loại 1 cực, 2 cực, 3 cục hoặc 4 cực. Theo điẹn áp phân ra điện áp định mức $250 \mathrm{~V}, 500 \mathrm{~V}$. Theo dòng điện dịnh mức có các loại: $15 ; 25 ; 30 ; 40 ; 60 ; 75 ; 100 ; 150 ; 200 ; 300 ; 350 ; 600 ; 1000 \mathrm{~A}$. Theo điêu kiẹn bảo vệ có loại không co họp, có loại có hộp che chắn. Theo yêu câu sừ dụng co loại cấu dao có cầu chì bảo vệ và loại không có cấu chì bảo vệ.

Trên hình 6.3 vẽ cáu tạo và ky hiệu câu dao.

6.3. NÚT ẤN

Là thiết bị điện để điều khiển từ xa (có khoảng cách) đóng cắt tự động mạch điẹn (mạch điện động cơ điện...).

Có hai loại nút ấn: nút ấn thường hở và nút ấn thường đóng.

1. Nút ấn thường hở

Trên hình 6.4 lả cấu tạo và ký hiệu nút ấn thường hở(mở).

Hinh 6.4.

1. tiếp điển đọng; 2. tiép điểm tīnh; 3. Iò xo; 4. kŷ hiệu nút ấn thường hở.

Khi ấn nút theo chiều mữi tên thì tiếp điểm đóng lại, nới mạch điện. Khi bỏ tay ra, nhờ lò xo phản, tiếp điểm lại trở vế vị trí ban đầu là hở mạch.

2. Nút ấn thường đóng

Trên hình 6.5 là cá̛u tạo và ky hiệu nút ấn thường dóng.

Hinh 6.5.
I. tiếp điểm đọng; 2. tiếp điểm tînh; 3. lò xo; 4. ky hiệu nút án thường đóng.

Khi ấn nút theo chiều mũi tên thì tiếp điểm hở ra, cắt mạch điẹn. Khi bỏ tay ra, nhờ lò xo phản, các tiếp điểm trở lại vị trí ban đầu là thường đóng.

6.4. CÔNG TÁC TO ĐIẸN TÙ

Công tấc tơ là loại thiết bị điện dùng để đóng cắt từ xa, tự động hoặc bằng nứt ấn các mạch điện có tải điẹn áp đến 500 V , dòng điện đên 600 A .

Công tắc tơ có hai vị trí: đóng và cắt. Tiếp điểm được giữ ở trạng thái đơng nhờ có dòng điện trong cuộn dây hút (cuộn điểu khiển) của cơ cấu điện từ.

Công tắc tơ điẹ̣n từ có các bộ phận chính sau:

- Co cáu điện từ.
- Hệ thớng tiếp điểm chính
- Hẹ thớng tiếp điểm phụ
- Hệ thớng dập hồ quang.

Trên hình 6.6 vẽ sơ đồ nguyên lý chung của các công tắc tơ điẹn từ.

Hinh 6.6
Trong sơ đồ hình 6.6 ta tháy 2 bộ phạn cơ bản: cơ cấu diện từ và cơ cá truyền động. Cơ cấu truyền động gồm hệ thống tay đòn và tiếp điểm độn Cơ cấu truyền động phải có kết cấu hợp lŷ để giảm thời gian thao tác đơn cắt, tăng lực ép các tiếp điểm và giảm được tiênng kêu va đập.

1. Cơ cấu điện tù̀

Cơ cấu điện từ của công tắc tợ gồm có mạch từ và cuộn dây hút.
Mạch từ của cong tắc tơ điện xoay chiều là các lõi thép được ghép bần lá thép kỹ thuật điẹn có chiều dày $0,35 \mathrm{~mm}$ đến $0,5 \mathrm{~mm}$ để giảm tởn hao s ? từ do dòng điện xoáy. Mạch từ có dạng hình chữ E hoặc chữ U , gồm 2 phâr phần tīnh (1) được ghép chặt có định, phần động (2) là nắp còn gọi là phầ ứng được nới với các tiếp điểm (3) qua hệ thống tay đòn (4).

Cuộn dây hút (5) có điện trở rất bé so với điện kháng. Khi có đòn điẹn qua cuọn hút, sẽ có lực điẹn từ hút nắp (phần động 2), thông qua h thớng tay đòn, đóng tiếp điểm (3), duy trì vị trí đóng mạch điện của côn tắc tơ (hình 6.6).

Nguyên lý làm việc của công tấc tơ điện một chiều cũng tương tự nh trên, thường chỉ khác ở hình dáng kết cấu truyền động của mạch từ tới tié điểm. Công tắc tơ điẹn một chiều thường dùng mạch từ kiểu xupáp, có tié điểm động bắt chặt ngay vào nắp. Ngoài ra, vì sử dụng dòng điện mộ chiểu, nên mạch từ thường lảm bằng sắt từ mềm, cuộn dây thường có dạn

 tac tor Vatiep diem thưong hơ, tiep diem thurong dong.

Kni co dong dien vå cuon day, $1 \delta i$ sat bi hut xuбng mot luc thang luc aky cath io x心 phan lam cho tiep diem thuong dong bithy ra va tiep diem thuting ha bi dong lai. Nen cuen day bi max dien, do the dyng cian lye diyy cha 10 xo, he thong cac tiep diem trá ve vi tribandin.

 5. K 2 ky hicu tiép sifm thưong disng

CAc sб liepu ky thuqt cina cong tac to la:
 diom chinh phili dong cht, thutong ob cice efp 110 V ; $220 \mathrm{~V} ; 440 \mathrm{~V}$ dipn mot chidu va $127 \mathrm{~V}: 220 \mathrm{~V}$: 380 V : 300 V xoay chisu.
 105% dien 6 p dinh mưe.

- Dong dien dinh mữc $I_{\text {dm }}$ la dong dien di qum tiep difm chinh trong che ţ lam viec gian dogn lau dai, nghin la tioner dop nay thori gian cong cac to ó trang thai dơng khong lau quif 8 giơ.

Công tắc tơ có các cấp dòng điẹn thông dụng $10 ; 20 ; 25 ; 40 ; 60 ; 75$; $100 ; 150 ; 250 ; 300 ; 600 \mathrm{~A}$.
hình trụ tròn, có thể quấn sát vào lōi, vì lõi thẹp ít nóng hơn trường hợp điện xoay chiều.

2. Hệ thống tiếp điểm

Hẹ thớng tiếp điểm gồm các tiếp điểm thường hở(mở) (ở trạng thái hở) và tiếp điểm thường đóng (ở trạng thái đóng) khi chưa có tác đọng của cuộn điều khiển (cuộn hút).

Trên hình 6.7 a vẽ vị trí các tiép điểm thường hở, thường đóng khi không có dòng điện vào cuợn dây điều khiển. Hình 6.7 b vẽ̃ ký hiệu cuộn dây công tắc tơ K và tiếp điểm thường hở, tiếp điểm thường đóng.

Khi có dòng điện vào cuộn dây, lỡi sắt bị hút xuớng một lực thắng lực đảy của lò xo phản làm cho tiếp điểm thường đóng bị hở ra và tiếp điểm thường hở bị đơng lại. Nếu cuộn đây bị mất điện, do tác dụng của lực đẩy của lò xo, hẹ thống các tiếp điểm trở về vị trí ban đầu.

4

5

Hinh 6.7. 1. Iơi ṣ̂̆́t ; 2. cuọn dây K; 3 : 1̀̀ xo ; 4. $\mathrm{K}_{\mathbf{1}}-\mathrm{kyy}$ hiệu tiếp điểṇ thường hở; 5. $\mathrm{K}_{2} \mathrm{ky}$ hiẹu tiếp điêm thương dóng

Các sớ liệu kỹ thuật của cong tấc tơ là:

- Điện áp định mức U_{dm} là điện áp của mạng điện tương ứng mà tié́p điểm chính phải đóng cắt, thường có các cáp $110 \mathrm{~V} ; 220 \mathrm{~V} ; 440 \mathrm{~V}$ điện một chiều và $127 \mathrm{~V} ; 220 \mathrm{~V} ; 380 \mathrm{~V} ; 500 \mathrm{~V}$ xoay chiều.

Cuợn hút có thể làm việc bình thường ở điẹn áp trong giới hạn 85% đến 105% điện áp định mức.

- Dòng điện định mức $\mathrm{I}_{\text {đm }}$ là dòng điện đi qua tiếp điểm chính trong chê đọ làm việc gián đoạn lau dài, nghĩa là ở chế độ này thời gian công tắc tơ ở trạng thái đóng không lâu quá 8 giờ.

Công tắc tơ có các cấp dòng điện thơng dụng $10 ; 20 ; 25 ; 40 ; 60 ; 75$; $100 ; 150 ; 250 ; 300 ; 600 \mathrm{~A}$.

6.5. KHỞI ĐỘNG TỪ

Khởi động từ là một loại thiết bị điện dùng để điều khiển đóng cắt từ xa, đảo chiều quay và bảo vệ quá tải (nếu có mấc thêm rợe nhiệt) cho các động cơ ba pha rôto lồng sóc. Loaai khởi động từ có một công tấc tơ gọi là khởi đợng từ đơn, thường dùng để điều khiển đóng cắt động cơ điện. Khởi động từ có 2 cơng tắc tơ gọi là khởi động từ kép dùng để khởi động và điều khiển đảo chiều quay động cơ điện. Muớn khởi đọng từ bảo vệ được ngắn mạch phải mắc thêm cẩu chì.

Người ta phân chia khởi động từ thành các loại sau:

- Theo điẹn áp định mức của cuộn day hút: $36 \mathrm{~V} ; 127 \mathrm{~V} ; 220 \mathrm{~V} ; 380 \mathrm{~V}$ và 500 V .
- Theo kết cấu bảo vệ chớng tác động bởi mơi trường xung quanh có các loại: hở, bảo vệ, chớng nớ.

Cũng như các thiết bị điện thấp áp, các chi tiết của khởi động từ làm việc không có dâu mỡ bôi trơn, tức làm việc khô, do đó phải làm từ vật liệu ít bị mòn do ma.sát và không bị gi. Ngày nay người ta dùng kim loại - nhựa có đọ bền chịu mòn cao, có thể bến gáp 200 lần so với giữa kim loại-kim loại.

Trên hình 6.8 vẽ sơ đờ dùng khởi động từ đơn để đóng cất điều khiển động cơ điện.

Trên sơ đồ ký hiẹu như sau:

- A, B, C, O mạh ba pha 4 day.
- CC là cầu chl
- 1RN, 2RN 2 rolle nhiẹt đạt ở 2 pha
- K cuộn day cơng tá̛c tợ co 4 tiếp điểm thường mờ ($\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$ ở mạch dộng lực, K_{4} ờ mạch điếu khiển).
- D nứ ấn thường đóng (nút dừng máy)
- M nút án thường hở (nút mở máy)

Hoạt động của sơ đồ như sau:

- Mở máy: ấn nút mở máy M , dòng điện đi từ pha C qua cầu chì, qua D , 4, K, 2 tiếp điểm thường đóng $1 \mathrm{RN}, 2 \mathrm{RN}$ của rơle nhiệt, về trung tính O , uộn dây K có điện, đóng các tiếp điểm $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$ cung cấp điện cho động o. Đồng thời đơng tiếp điểm K_{4} để tự khoá nút M (bỏ tay ấn nút M ra, nạch điện vẩn được duy trì, đi qua tiếp điểm K_{4}).
- Muốn cất động cơ (dừng máy) ta ấn nút D, cuộn dây công tắc tơ K mất iện, các tiếp điểm $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}, \mathrm{~K}_{4}$ hở ra, động cơ cắt khỏi nguồn điện.
- Bảo vệ động cơ : cầu chì CC bảo vệ ngắn inạch, hai rơle nhiệt RN bảo ệ quá tải.

6.6. CẦU CHÌ

Câu chì là loại thiết bị điện dùng để bảo vệ các thiết bị điện và mạch iện tránh quá dòng diện (chủ yếu là dòng điện ngắn mạch). Trong mạng liẹn ta thường thấy cầu chỉ bảo vệ các đây điện và cáp, bảo vệ đồ dùng diện ia đình, bảo vệ máy biến áp, động cơ điện...

Hai phần tử cơ bản của câu chì là: dây chảy và thiết bị dập hồ quang phần tử dạp hờ quang thường gạ̣p ở cầu chì cao áp).

Day chảy là phần tử quan trọng nhất, để cắt mạch điẹn khi có sự cố một ách tin cạy, day chảy cấn thoả mãn các yeu cầu sau:

- Không bị oxy hoá.
- Dẩn điẹn tớt.
- Nhiệt đọ nóng chảy tương đới thấp.
- Kim loại vật liệu ít.
- Quán tính nhiẹt phải nhỏ.

Để giảm nhiệt độ tác động; người ta thường dùng 2 biện pháp:

- Dùng dây dẹt có chồ thắt lại để giảm tiết diện.
- Dùng day tròn, trên một só đoạn hàn thêm một só vảy kim loại có hiẹt đọ nóng chảy thấp.

Cấu tạo của cấu chì có các loại sau: loại hở, loại vặn, loại hợp, loại kín hông có cát thạch anh, loại kín trong ớng có cát thạch anh.

Câu chì có đạ̣c điểm là đơn giản, kích thước bé, khả năng cắt (bảo vẹ) ơn và giá thành thấp, nên ngày nay vẫn được ứng dụng rộng rāi.

6.7. ÁPTÔMÁT

Áptomát là thiét bị điện dùng để tự động cắt mạch điẹn, bảo vẹ quá tải ngắn mạch, sụt áp..., hồ quang dược dạp trong khong khí.

Sơ đờ nguyên ly̆ của áptomát bảo vệ dòng điện cực đại vẽ trên hình 6.9 .

Ở trạng thái bình thường, sau khi đóng điện, áptômát được giữ ở trạng thái đóng tiếp điểm nhờ móc răng 1 khớp với cần răng 5 cùng một cụm vớ tiếp điếm đọng 6.

Khi mạch điện quá tải hay ngấn mạch, dòng diện chạy qua cuộn dạy 2 lớn, lực hút điện từ tăng lên thắng lực lò xo 3 kéo phần ưng 4 xuớng làm nhả móc 1 , cần 5 được tự do, tiép điểm đọng

Hinh 6.9. 6 của áptômát được mở ra do lực của lò xo 7 , mạch điện bị cắt.

Áptômát thường được phân loại như sau:

- Theo kết cấu: loại 1 cực, 2 cực, 3 cực.
- Theo thời gian tác động: loại tác động không tức thời, loại tác động tức thời.
- Theo chức năng bảo vệ: loại bảo vệ dòng cực đại, dòng cực tiểu, bảo vệ công suất điện ngược, bảo vệ áp cực tiểu...

Đẻ̉ thực hiện yêu cầu thao tác chọn lọc bảo vệ, áptômát phải có khả năng hiẹu chỉnh dòng tác động và thời gian tác động.

CÂU HỎI ÔN TẬP

6.1. Cấu tạo và nguyên lý làm việc của rơle điệ̀n từ và rơle nhiệt?
6.2. Định nghĩa, cấu tạo cơ bản và nguyên lý làm việc của cóng tá̛c tơ diện tự?
6.3. Họ̀ thớng tiếp điểm cửa công tấc to gồm nhừng loại gî Něu định nghīa mõ̃i loại tiếp điển?
6.4. Trình bày nguyên lý hoạt động của sơ đồ điè̀u khiển động co lớng sóc?
6.5. Giải thich nguyến lý làm việc của co cắu rơle bảo vệ dòng cực tiêu ử hình B6.5?

Chương 7

CHIẾU SÁNG

Trong các công trình phục vụ cho sản xuất và đời sơng, ngoài chiếu sáng tự nhiên, cần phải dùng đến chiếu sáng nhân tạo. Để chiếu sáng nhân tạo, phở biến nhất là dùng đèn điện. sở dī như vậy vì thiết bị chiếu sáng điện đơn giản, giá thành thấp, sử dụng thuận tiện và nhất là tạo ra được ánh sáng gần giơng với ânh sáng tự nhiên. Chương này sẽ cung cấp một sớ liến thức chiéu sáng, vì chiếu sáng tớt sễ góp phân nâng cao sản xuất và đời sống xã hội.

7.1. CÁC ĐẠI LỰ̛̛NG CƠ BẢN VÀ ĐƠN VỊ ĐO

1. Quang thông $\Phi(F)$, luymen- lm

Ta đã biết ánh sáng là sóng (tia, bức xạ) điện từ có bước sóng trong khoảng 380 nm đên $780 \mathrm{~nm}\left(1 \mathrm{~nm}=10^{-9} \mathrm{~m}\right)$ mà mắt con người có thể cảm nhận dược.

Quang thông của một nguồn sáng là năng lượng ánh sáng của nguồn sáng phát ra trong một đơn vị thời gian. Cũng có thể hiếu rằng, quang thông là cong suất phát sáng, được đánh giá bằng cảm giác với mắt thường của người có thể cảm nhận được lượng bức xạ.

Người ta thường ky hiệu quang thơng là ϕ hoặc F. Đơn vị của quang thông là luymen (lumen) ky hiẹu là Im.

Cūng như công suất điện P , quang thông là một thông só rất quan trọng của đèn. Mỗi đèn điẹn, ưng với cơng suất định mức (P_{dm}) và điện áp định mức $\left(\mathrm{U}_{\mathrm{am}}\right.$) sẽ phát ra quang thông địinh mức $\Phi_{\text {am. }}$. Các thông só này.do nhà chế tạo cung cấp. Từ các số hiệu này, ta có thể chọn đèn phù hợp cho thiễt kế, và đánh giá đèn nào tiết kiệm điện nảng hơn.

Ví dụ 1: Bảng dươi đây đưa ra thông só của một so đèn sợ đơt và đèn huỳnh quang điẹn áp định mức $\mathrm{U}_{\mathrm{am}}=220 \mathrm{~V}$.

Đen sựi dốt		Đèn ong huỳnh quang $1,2 \mathrm{~m} ; 38 \mathrm{~mm}$	
P(W)	$\Phi(\mathrm{lm})$	P(W)	$\Phi(\mathrm{lm})$
40	430		
100	1390	40	2450
Đèn sợ đớt halogen		Đèn ơng huy̆nh quang $1,2 \mathrm{~m} ; 26 \mathrm{~mm}$	
P(W)	$\Phi(\mathrm{lm})$	P (W)	Φ (lm)
100	2100	36	3350

Hāy tính hiệu suất phát quang (HSPQ) của môi loại đèn và cho nhận xêt đèn nào tiết kiệm điện nāng.

Lời giải :

Hiệu suất phát quang của nguồn sáng được định nghĩa là

$$
\begin{equation*}
\mathrm{HSPQ}=\frac{\Phi}{\mathrm{P}} \tag{7-1}
\end{equation*}
$$

đơn vị là $\frac{\text { lm }}{W}$
Hiệu suất phát quang của đèn sợi đơt thông thường $P=40 \mathrm{~W}$ là :

$$
\mathrm{HSPQ}=\frac{\Phi}{\mathrm{P}}=\frac{430}{40}=10,75 \mathrm{~lm} / \mathrm{W}
$$

Hiệu suắt phát quang của đèn sợi đớt halogen là :

$$
\mathrm{HSPQ}=\frac{\Phi}{P}=\frac{2100}{100}=21 \mathrm{~lm} / \mathrm{W}
$$

Hiệu suất phát quang của đên ống huỳnh quang dài $1,2 \mathrm{~m}$, đường kính ớng 38 mm :

$$
\mathrm{HSPQ}=\frac{\Phi}{\mathrm{P}}=\frac{2450}{40}=61,25 \mathrm{~lm} / \mathrm{W}
$$

Hiệu suắt phát quang của đèn ớng huỳnh quang dài $1,2 \mathrm{~m}$, đường kính ống 26 mm :

$$
\mathrm{HSPQ}=\frac{\Phi}{\mathrm{P}}=\frac{3350}{36}=93 \mathrm{~lm} / \mathrm{W}
$$

Qua tính toán ở trên, ta thấy đèn ơng huỳnh quang thế hệ mới dường kính ơng 26 mm có hiệu suất phát quang cao ($93 \mathrm{~lm} / \mathrm{W}$), đèn sợi đớt thông thường có hiệu suất phát quang thấp ($10.75 \mathrm{~lm} / \mathrm{W})$.

Vậy sử dụng đèn huỳnh quang tiết kiệm diện năng hơn đèn sợi dớt.

2. Cường độ sáng I, candela - cd

Là đơn vị đo quang mới được đưa vào hệ đơn vị SI, được định nghĩa xuất phát từ khái niệm quang thông.

Trước hét ta xét mợt nguồn sáng S phát ánh sáng đều trong không gian. Trong gớc khơi Ω (góc khới là góc trong không giañ), quang thông của nguồn phát ra là Φ (hình 7.1)

Cường độ sáng của nguồn được định nghĩa là :

$$
\begin{equation*}
\mathrm{I}=\frac{\Phi}{\Omega} \tag{7-2}
\end{equation*}
$$

Cường độ sáng I bằng nhau theo mọi hướng.
Nếu nguồn phát ánh sáng không

Hinh 7.1

Hinh 7.2

Đơn vị của cường độ sáng là candela, ký hiệu là cd.

Ví dụ 2: Tính góc khơi bao quát toàn khờng gian quanh tâm O của bơng đèn tròn.

Lò̀i giài :

Gớc khới là góc không gian được định nghĩa ià

$$
\Omega=\frac{\mathrm{S}}{\mathrm{R}^{2}}
$$

đơn vị là steradian sr.

Hinh 7.3

Trong đo: R là bán kính của hình cấu tâm O S là diẹn tích trên hình cáu ứng với góc khơi Ω (hình 7.3).

Góc khơi bao quát toàn không gian bao quanh tâm O là :

$$
\Omega=\frac{S_{\text {hình cáu }}}{R^{2}}=\frac{4 \pi R^{2}}{R^{2}}=4 \pi(\mathrm{sr})
$$

Ví dụ 3: Tính cường độ I của bơng đèn trên sợi đớ $\mathrm{P}=40 \mathrm{~W} ; \mathrm{U}=220 \mathrm{~V}$

Lòt giải :

Tra bóng dèn sợi đớt ta có :

$$
P=40 \mathrm{~W} ; \phi=430 \mathrm{~lm}
$$

Cường độ sáng I dờng đểu theo mọi hướng của bóng đèn tròn sợi đớ là:

$$
\mathrm{I}=\frac{\Phi}{\Omega}=\frac{430}{4 \pi}=34 \mathrm{Cd}
$$

Ví dụ 4: Trong một gớc khơi $\mathrm{d} \Omega=5,55.10^{-9} \mathrm{sr}$, mặt trời phát ra một quang thông cho quả dất $\mathrm{d} \Phi=1,45.10^{19} \mathrm{Im}$ (hình 7.4)

Tính cường độ sáng I của mặt trời chiếu xuớng quả đất.

Lời giải :

Cường độ sáng của mặt trời chiếu xuơng quả đất là

Hinh 7.4

$$
I=\frac{d \Phi}{d \Omega}=\frac{1,45 \cdot 10^{19}}{5,55 \cdot 10^{-9}}=2,61 \cdot 10^{27} \mathrm{~cd}
$$

3. Độ rọi E, lux - lx

Độ rọi E là mạt độ quang thông trên bể mặt được chiếu sáng. Độ rọi E cho ta biết mức đọ được chiếu sáng nhiều hay ít.

Khi quang thông phân bớ đều trên bể mặt :

$$
\begin{equation*}
E=\frac{\Phi}{S} \tag{7-4}
\end{equation*}
$$

Trong đó: Φ là quang thông trên bề mặt được chiếu sáng:
S là diện tích bề mặt được chiếu sáng.
Đơn vị của độ rộ là lux ký hiệu là lx.

$$
\operatorname{lux}=\frac{1 \mathrm{~lm}}{1 \mathrm{~m}^{2}}
$$

Khi quang thơng không phân bố đều thì trị só E trong công thức (7-4) là đọ rọ̣i trung bình trên bề mật S

Ví đụ 5: Một lớp học có chiếu rộng $\mathrm{a}=7,5 \mathrm{~m}$, chiều dải $\mathrm{b}=11,5 \mathrm{~m}$. Người ta chiếu sáng bằng 6 bộ đèn, môi bộ đèn có 2 ơng huỳnh quang $1,2 \mathrm{~m}, \mathrm{P}=36 \mathrm{~W}$; $\phi_{\mathrm{d}}=3350 \mathrm{~lm}$. Biét hệ sớ sử dụng quang thông $\mathrm{k}_{\mathrm{sd}}=0,65$. Tính đọ rọi trên bế mặt làm việc (bề mặt ngang bàn học, cách nền nhà $0,8 \div 0,85 \mathrm{~m}$).

Lờ giài :

Diện tích bề mặt làm viẹc :

$$
\mathrm{S}=\mathrm{b} . \mathrm{a}=11,5 \times 7,5=86,25 \mathrm{~m}^{2}
$$

Theo định nghĩa, hệ sơ sừ dụng quang thông là :

$$
\begin{equation*}
\mathrm{k}_{\mathrm{sd}}=\frac{\Phi_{\mathrm{s}}}{\Phi_{\mathrm{t}}} \tag{7-5}
\end{equation*}
$$

trong đó : $\quad \Phi_{\mathrm{S}}$ - quang thông nhận dược trên bề mặt làm việc S .
Φ_{1} - quang thông tởng của tất cả các nguồn sáng.
Só óng huỳnh quang trong lớp N là:

$$
\mathrm{N}=6 \times 2=12 \text { óng huỳnh quang }
$$

Quang thông tớng của tất cả các ớng huỳnh quang là:

$$
\Phi_{1}=\mathrm{N} \phi_{\mathrm{le} \mathrm{en}}=12 \times 3350=40200 \mathrm{~lm}
$$

Từ (7-5) ta có quang thông nhận được trên bề mặt làm việc là:

$$
\begin{aligned}
& \Phi_{\mathrm{s}}=k_{24} \Phi_{1} \\
& \Phi_{\mathrm{s}}=0,65.40200=26130 \mathrm{~lm}
\end{aligned}
$$

Đọ rọi E trên bé mật làm việc là

$$
\mathrm{E}=\frac{\Phi_{\mathrm{S}}}{\mathrm{~S}}=\frac{26130}{86,25}=303 \mathrm{~lx}
$$

Một vài trị sớ độ rọi thông thường :

- Ngoài trời, buổi trưa hè trời nắng 100000 lx
- Ngoài trời, trời có may, mùa đông $2000 \div 30001 \mathrm{x}$
- Đêm trăng rằm 0,25 lx
- Phòng làm việc $300 \div 500 \quad$ Ix
- Nhà ở $150 \div 300 \quad$ lx
- Đường phó $20 \div 30 \quad 1 \mathrm{x}$

7.2. HỆ SỐ PHẢN XẠ ρ, Hệ SÓ THẤU XẠ τ, HỆ SÓ HẤP THU α

Quang thông rọi tới một vật thể sẽ chia ra các bộ phấn sau : một phần phản xạ, một phẩn xuyên qua vạt thể, và một phần bị vật thẻ̉ hấp thụ.

1. Hệ số phản xạ ρ

Hệ sớ phản xạ ρ của bề mặt vật thể được tính là :

$$
\begin{equation*}
\rho=\frac{\Phi_{\mathrm{p}}}{\Phi_{\mathrm{s}}} \tag{7-6}
\end{equation*}
$$

trong đó : Φ_{p} là quang thông phản xa.

$$
\Phi_{s} \text { là quang thông rọi tới bề mặt }
$$

2. Hệ số thấu xạ τ

Hệ só thấu xạ τ của vật thể được tính là :

$$
\begin{equation*}
\tau=\frac{\Phi_{\mathrm{x}}}{\Phi_{\mathrm{s}}} \tag{7-7}
\end{equation*}
$$

trong đó: Φ_{x} là quang thông xuyên qua vật thẻ̉
Hệ sớ thấu xạ τ còn gọi là hệ sơ dẳn quang.

3. Hệ số hấp thụ α

Hẹ sớ hấp thụ quang thông của vật thể là :

$$
\begin{equation*}
\alpha=\frac{\Phi_{\mathrm{h}}}{\Phi_{\mathrm{s}}} \tag{7-8}
\end{equation*}
$$

trong đó: $\quad \Phi_{h}$ là quang thông vật thể hấp thụ
Vì tồng quang thông phản xạ Φ_{p}, quang thông xuyên qua Φ_{x}, quang thông hấp thụ Φ_{h} bằng quang thồng rội tỡi bề mặt Φ_{S}, cho nên

$$
\Phi_{p}+\Phi_{x}+\Phi_{h}=\Phi_{s}
$$

chia cả 2 vế cho Φ_{s}
ta có : $\quad \rho+\tau+\alpha=1$
Các hẹ số này phụ thuộc rất nhiều vào màu của vật thể, khi thiết kế có thể ước lượng dựa vào màu sấc của vật thẻ.

Ví dụ ta lấy các hệ só phản xạ $\rho \%$ sau :

- Màu trắng sáng, thạch cao trấng 80\%
- Màu trắng nhạt, các màu rất sáng 70%
- Màu vàng, xanh sáng, màu xi măng 50\%
- Các màu rực rỡ, gạch 30%
- Các màu tới, kính 10%

7.3. ĐÈN SƠI ĐÓT

Nguỡn sáng điẹn kinh điển nhất là đèn sợi đớt. Đèn sợi đơt còn được gọi là đèn dayy tớ, đèn nung sáng. Đèn sợ đớt do Thomas Edison phát minh năm 1879, làm viẹc theo nguyen Iý sau : dòng điẹn - đớt nóng sọi đớt đén nhiẹt đọ rát cao (khoảng $2700-3100 \mathrm{~K}$), đèn phát sáng.

1. Cáu tạo đèn

Đèn sợi đớt gôm sợi đơt chịu nhiẹt đọ cao, đặt trong bóng thủy tinh trong sứt (hoặc mờ) và được nơi điẹn ra ngoài qua đuoí đèn (hình 7.5)

Hinh 7.5
Sợi đớt là day kim loại, thường là vonfram. Vonfram có nhiẹt độ nóng chảy cao 3650 K , được sử dụng làm sợi đơt đã hơn 80 năm qua. Vonfram là vạt liẹu lý tưởng, chịu được nhiệt đọ̣ cao, đọ bến cơ cao, độ bền điện tớt, khả năng phát xạ tớt. Người ta rút khơng khí trong bóng, tạo thành chân không để day tóc đèn khỏi bị oxy hóa nhanh ở nhiệt độ cao, song sợi đớt vonfram nằm trong môi trường chân khong ở nhiẹt đọ $2400-2600 \mathrm{~K}$, hiệu suất phát quang thấp (thường thấy ở đèn công suất nhỏ $\mathrm{P} \leq 25 \mathrm{~W}$). Đẻ̉ tảng hiệu suất phát quang, người ta phải tảng nhiẹt độ sợi đớt, song ở nhiẹt đọ tăng cao, sự bớc hơi của kim loại tăng, làm cho sợi đớt dẽ̉ bị đứt. Để giảm hiện tượng bay hơi của kim loại, người ta cho vào bóng đèn khf trơ (trước đây là nitơ rồi đến argon và bayy giờ là kripton). Tuy nhiên, khi có khí trơ trong bóng đèn, tởn thất dẫn nhiệt tăng lên, cờng suất đèn tăng lên và hiẹu suất phát quang giả̉m. Ngày nay người ta sử dụng cơng nghẹ làm sợi đớt xoắn kêp hoặc xoắn ba,
giảm bớt tởn thất nhiệt và hiệu suất phất quang của đèn tảng lên đáng kể, tì 10 đến $20 \mathrm{~lm} / \mathrm{W}$ và tuối thọ khoảng 1000 giờ.

Từ những năm 60 ngoài khí trơ, người ta còn cho thêm halogen (iót, brom ...) cho phép đạt nhiệt độ trên 3100 K , hiệu suất phát quang dạt tới 20 đến 22 $1 \mathrm{~m} / \mathrm{W}$, tuới thọ khoảng 2000 giờ.

Bơng đèn sợi đớt thơng dụng có công suất từ 15 đến 300 W làm bằng thủy tinh pha chì. Đé̉ giảm đọ chói, đèn sợi đớt công suất nhỏ, bên trong đượ lăm mờ bằng lớp bọt mịn. Lớp này hấp thụ ánh sáng ît (từ 1% đên 4%) che phép cải thiện nhiẹt độ màu của nguồn, tùy theo khả nāng lọc màu của lớ này. Trong các đèn có lớp phả̉n chiéu, người ta tráng một lớp bạc hoặc nhôm cho phép định hương chùm tia sáng.

Đơi với đèn halogen, bóng làm bằng thạch anh hoặc bóng hai vỏ, dùng trong đèn pha cho xe otô, đèn chiếu phim, đèn trong các công trình văn hóa thể thao.

Theo hình dạng bóng, có rật nhiểu kiểu, dưới đây đưa ra một số kiếu thường gặp (hình 7.6).

Hinh 7.6

Hình dáng bóng	Ký hiệu
Loại tiêu chuẩn	A
Hình cấu	G
Hình parabon	PAR
Đèn phản quang	R
Hình quả le	PS, P
Dạng ơng	T

Đuôi đèn có 2 kiểu : đuoi xoáy hình 7.5^{*} a đuôi ngạnh hình 7.5 b .
Đuôi ngạnh ít gặp, thường dùng cho công suất dưới 150 W. Đuoi xoáy dùng phở biến cho mọi cong suất.

Khi lắp đèn đuôi đèn được lắp vào đui đèn, nới với nguồn điện.

2. Các đặc tính của đèn sợi đốt

Ưu điểm cơ bản của đèn sợi đớt là phát ánh sáng liên tục, chỉ sơ thể hiện màu tớt, cho phép chiéu sáng chất lượng cao. Ngoài ra đèn sợi đốt còn có các ưu điém sau:

Mắc trực tiếp vào lượi điện, kích thước nhỏ, dể bố trí, lắp đạ̣t và dể sử dụng.

- Bạt sáng tức thời.
- Giá thành thắp.
- Có màu ám

Nhược điểm chủ yếu của đèn sợi đớt là hiệu suắt phát quang thấp, gây phát nơng. Sử dụng đèn sợi đơt để chiêu sáng không tiết kiệm điện năng, vì thế chỉ thích hợp với chiếu sáng trong nhà vơi mức chiếu sáng thấp như phòng ngủ, đèn bàn học tập, phòng tấm, quán cà phê...

Các đặc tính của đèn phụ thuộc rá̛t nhiều vào điện áp, vì rằng khi điẹn áp đặt vào đèn thay đỏi, dẩn đến dòng điện thay đới, kéo theo sự phát nóng, quang thông và tuơi thọ của đèn thay đơii.

Gọi $\Phi_{d m}, I_{d m}, P_{d m}, D_{d m}$ là quang thông, dòng điẹn, công suắt điẹn tiêu thụ và tuởi thọ của đèn ở điện áp định mức $U_{a m}$, khi cho đèn làm viẹ̉c với điện áp U , các giá trị $\Phi, \mathrm{I}, \mathrm{P}, \mathrm{D}$ của đèn sẽ là :

$$
\begin{equation*}
\Phi=\Phi_{\mathrm{dfm}}\left(\frac{\mathrm{U}}{\mathrm{U}_{\mathrm{dm}}}\right)^{3,5} \tag{7-10}
\end{equation*}
$$

$$
\begin{align*}
& I=I_{d m}\left(\frac{U}{U_{d m}}\right)^{0,5} \tag{7-11}\\
& P=P_{\mathrm{dm}}\left(\frac{\mathrm{U}}{\mathrm{U}_{\mathrm{dm}}}\right)^{1.5} \tag{7-12}\\
& \mathrm{D}=\mathrm{D}_{\mathrm{dm}}\left(\frac{\mathrm{U}_{\mathrm{dm}}}{\mathrm{U}}\right)^{13,5} \tag{7-13}
\end{align*}
$$

Tren hình 7.7 biểu diễn các quan hẹ này theo giá trị tưong $đ \sigma_{i}$ so với định mức.

Ví dụ 6 : Cho đèn sọi đớt $\mathrm{U}_{\mathrm{dtm}}=220 \mathrm{~V}$, $\mathrm{P}_{\mathrm{dm}}=40 \mathrm{~W}, \Phi_{\mathrm{am}}=430 \mathrm{~lm}$ $\mathrm{D}_{\mathrm{Jm}}=1000$ giò̀.
a) Tính quang thong của đèn, khi đèn làm việc vớ diện áp $U=200 \mathrm{~V}$
b) Tính tuới thọ của đèn khi đèn làm viẹc vơi điẹn áp $\mathrm{U}=240 \mathrm{~V}$.

Lời giài :
a) Áp dụng công thức (7-10) ta có

*

 $6 i$$$
\Phi=\Phi_{\mathrm{dm}}\left(\frac{\mathrm{U}}{\mathrm{U}_{\mathrm{dm}}}\right)^{3,5}=430\left(\frac{200}{220}\right)^{3,5}=308 \mathrm{Im}
$$

Ta thắy rằng khi $\mathrm{U}=200 \mathrm{~V}$, quang thơng giảm rất nhiều so với khi làm viẹc vớ điẹn áp định mức 220 V .
b) Áp dụng cong thức (7-13)

$$
\mathrm{D}=\mathrm{D}_{\mathrm{dm}} \cdot\left(\frac{\mathrm{U}_{\mathrm{dm}}}{\mathrm{U}}\right)^{13,5}=1000 \cdot\left(\frac{220}{240}\right)^{13,5}=309 \text { giờ }
$$

Ta thắy rằng khi $\mathrm{U}=240 \mathrm{~V}$, tuổi thọ của đèn chỉ còn 309 giờ, giảm rắt nhiều sc với lúc làm việc vơi điện áp định mức 220 V .

Bảng dưới đay là đạ̣c tính công suất và quang thông của đèn sợi đốt tiêu chuẩn và đèn sợi đớt halogen loại $\mathrm{U}_{\mathrm{am}}=220 \mathrm{~V}$

Đèn sợ đốt tiêu chuẩn 220V				Đèn halogen	
$\mathbf{P}(\mathrm{W})$	$\Phi(\mathrm{lm})$	$\mathrm{P}(\mathrm{W})$	$\Phi(\mathrm{lm})$	$\mathrm{P}(\mathrm{W})$	$\Phi(\mathrm{lm})$
15	120	150	2200	100	2100
25	220	200	3000	300	6300
40	430	300	5000	500	10500
60	740	500	8700	1000	$22000-26000$
75	970	1000	18700	1500	33000
100	1390	1500	27700	2000	$44000-54000$

7.4. ĐÈN HUỲNH QUANG

1. Hiện tượng huỳnh quang

Khi một tia (bức xậ) đơn sắc đập vào chất huỳnh quang, một phần năng lượng của nó biến thành nhiệt, phần năng lượng còn lại xuất hiẹ̀n dưới dạng một phở lien tục các bức xạ. Như vậy tia sơ cấp đóng vai trò kích thích đẻ̉ chất huỳnh quang phát ra bức xạ thứ cấp.

Nếu các tia sơ cấp kích thích nằm trong vùng tia tử ngoại, khi đập vào lớp bột huỳnh quang cơ thành phần chủ yếu là phôtpho, thì các tia thứ cấp là phở các bức xạ ánh sáng. Dựa vào hiện tượng này, người ta chê tạo ra đèn huỳnh quang.

2. Cáu tạo đèn huỳnh quang -

Đèn huỳnh quang có dạng ơng và dạng bóng. Loại óng thường gặp và gọi là đèn ớng (tuŷp) huỳnh quang (hình 7.8).

Hinh 7.8
Về cấu tạo gồm ơng thủy tinh bền (1) (dài $0,6 \mathrm{~m} ; 1,2 \mathrm{~m} ; 1,5 \mathrm{~m} ; 2,4 \mathrm{~m}$), mặt trong ớng có phủ một lơp bột chất huỳnh quang (2). Trong ông có bó
sung khí trơ (khí acgông) và vài giọt chất thủy ngan (3) ở áp suất thấp. ở hi đấu ơng có 2 diẹn cực bằng vonfram có phủ lớp oxit bari kích thích phát x điẹn tử (4).

3. Nguyên lý làm việc

Khi làm việc, hiện tượng phóng điện giữa 2 điện cực trong môi trường c hơi thủy ngân, ởáp suắt thấp, làm ion hơa hơi thủy ngân và phát ra các tia t ngoại (khơng nhìn tháy). Tia từ ngoại là các tia sơ cấp, tác dụng vào lớp be huỳnh quang ở thành ớng, tạo ra các bức xạ thứ cấp là ánh sáng. Màu của án sáng phụ thuộc vào bản chất và liều lượng bột huỳnh quang.

4. Đậe tính

- Điện áp định mức $127 \mathrm{~V} ; 220 \mathrm{~V}$
- Chiều dài óng, công suất

$0,6 \mathrm{~m}$	$20 \mathrm{~W} \div 18 \mathrm{~W}$
$1,2 \mathrm{~m}$	$40 \mathrm{~W} \div 36 \mathrm{~W}$
$1,5 \mathrm{~m}$	$65 \mathrm{~W} \div 58 \mathrm{~W}$
$2,4 \mathrm{~m}$	105 W

Loại công suất tiêu thụ lớn ứng với đèn ơng huỳnh quang - đường kín ớng 38 mm . Ngày nay người ta chế tạo được lớp bột huỳnh quang mịn, phát x thứ cấp tớt, hiệu suất phát quang tăng, nhờ đó cho phép làm nhỏ ớng t 38 mm xuơng $32 \mathrm{~mm}, 26 \mathrm{~mm}$ và loại thế hệ mới ra đời đường kính ơng 26 mn công suất tiéu thụ nhỏ (tù̀ 20 W xuơng 18 W ; 40W xuớng 36 W ; 65 W xuón 58 W) mà quang thong phát ra lớn hơn.

Quang thông $\Phi(\mathrm{lm})$ của mọt s δ loại đèn ơng huỳnh quang

Đèn ơng thê hẹ 1 đường kính ơng 38 mm				
	$\begin{aligned} & 0,6 \mathrm{~m} \\ & 20 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1,2 \mathrm{~m} \\ & 40 \mathrm{w} \end{aligned}$	$\begin{aligned} & 1,5 \mathrm{~m} \\ & 65 \mathrm{w} \end{aligned}$	$\begin{gathered} 2, \mathrm{~m} \\ 105 \mathrm{~W} \end{gathered}$
Màu trắng ám	13501m	32001m		89501m
Sang ban ngày	1000	2450		
Màu trấng Z	930	2450	3750	6300
Trắng cơng nghiệp	1150	3200	5100	8900
Đèn ơng thế hệ 2 đường kính 26 mm				
Ánh sáng ban ngày	13501m	32001m	5100 m	
Màu trắng	1400	33501m	53001 m	

- Hiẹu suá́t phát quang khoảng $40 \mathrm{~lm} / \mathrm{W} \div 90 \mathrm{~lm} / \mathrm{W}$
- Tuổi thọ của đèn phụ thuộc vào só lần bật tất đèn, khoảng 6000 giờ.

So với đèn sợi đớt, đèn huỳnh quang có ưu điểm hơn là tuổi thọ dài hơn, hiệu suất phát quang cao hơn, sử dụng đẹ̀n huỳnh quang sẽ tiét kiẹm điẹn năng hơn, vì thế đèn ơng huỳnh quang được sử dụng phổ biến để chiếu sáng trong nhà, lớp học, công sở, nhà máy... v.v. Tuy vậy đèn ơng huỳnh quang có nhược điểm là giá thành cao, cần nhiều phṇ kiẹn, bơ trí lấp đặt phức tạp, cân mồi phơng điẹn...

Cüng như các đèn phơng điện, đèn ơng huỳnh quang chỉ làm việc tớt ở điện áp định mức khi điện áp thay đơii thì các đại lượng ϕ, P, hiệu suất phát quang thay đói.

5. Mối phơng điện

Vì khoảng cách giữa 2 điện cực đèn phóng điện lớn, khi đóng đèn vào nguồn điện tần $\mathbf{s} \sigma 50 \mathrm{~Hz}$, các đèn phơng điện không phát sáng làm việc ngay được mà cần phải mời phơng điện cho đèn. Để mồi phóng điện, ta thường dùng các biẹn pháp sau:

- Sử dụng chấn lưu điện cảm và tắcte
- Sử dụng chấn lưu kiểu tụ ngảu.

Cả hai loại chấn lưu này được gọi là chấn lưu từ

- Sử dụng chấn lưu điện tử.

Ở nước ta hiện nay thường dùng chấn lưu điện cám với tắc te và chấn lưu điện tử.

a) Sử dung chấn luru diện cảm và tăc te

Chấn lưu điện cảm là mợt cuộn day quấn quanh lõi thép (để có điện cảm lớn) đặt trong hợp gọi là chấn lưu (hình 7.9)

Hinh 7.9

Tắc te thường là loại tắc te khí, gồm có bóng thủy tinh nhỏ (1), trong đó co 2 điện cực (hình 7.10) điện cực tĩnh (2) và điện cực đọng (3) ; ngoài ra còn có tụ điẹn (4) để chớng nhiểu vô tuyến, và chân cắm. Cực động là cực lượng kim (gồm 2 miéng kim loại cơ hệ só giān nở về nhiệt khác nhau, ghép chặt vào nhau).

Sơ đờ mắc mạch điện đèn ớng huỳnh quang như hình 7.11. Trong đó ký hiệu như sau:

Công tắc đèn (1), chấn lưu (2), 2 điện cực đèn ống huỳnh quang (3), tiếp điểm động của tắc te (4), tiếp điểm cớ định (5).

Hinh 7.10

Hinh 7.11
Khi đóng công tắc 1 , sẽ cơ điện áp đật giữa 2 điện cực 3 của ớng huỳnh quang, song vì khoảng cách giữa 2 điện cực lớn, đèn không phóng điện, điện áp đặt vào 2 cực 4 và 5 của tắc te, tắc te phóng điện, các cực của tắc te bị đớt nóng, cực động uốn cong và chạm vào cực tĩnh, đơng mạch tắc te, mạch điện nối liền, cơ dòng điện chạy qua chấn lưu, qua điện cực đèn huỳnh quang, qua điện cực chấn lưu. Dòng điện này nhọ̉, song có tác dụng làm nông 2 điện cực đèn ớng huỳnh quang, và tích lũy nāng lượng từ trường cho cuộn điện cảm.

Sau khi 2 cực tắc te nói liền (đóng mạch), không còn phóng điện giữa 2 cực tấc te, cực động bắt đâu nguội đần và trở lại vị trí ban đâu tách rời khỏi cực tĩnh (hở mạch cực tắc te). Kết quả là đòng điện qua chấn lưu bị cắt đột ngột, xảy ra hiện tượng quá điẹn áp đặt lên 2 cực đèn huỳnh quang, đèn phóng điện làm việc.

Khi đèn làm việc bình thường, do có điện áp rơi trên chấn lưu, điện áp đặt lên đèn nhỏ, dòng điện chạy qua đèn không lợn bảo vệ được điện cực và đèn làm việc ổn định.

Nhược điểm của chấn lưu điện cảm là làm cho hệ số cờng suất mạch điện đèn thấp bằng $0,45 \div 0,55$; ta phải dùng tụ điện C để bù, cho hẹ̣ só công suất đạt được $0,85 \div 0,9$; ngoài ra có tổn hao công suất trong chấn lưu điện cảm (khoảng 15% đến 25% công suất đèn).

b) Chán luru điẹn tủ̉

Chấn lưu điện tử thực chất là bộ biến tần cong suất nhỏ, biến đổi tần só mạng điện 50 Hz thành tần $s 606 \mathrm{kHz}$ cung cấp cho đèn. ở tần số cao đèn dễ dàng phơng điện, lúc làm việc hiệu suát phát quang tăng thêm 10%, hệ so công suất cao khoảng 0,9 , không cấn tụ điện bù $\cos \varphi$, đồng thời tởn hao cơng suất trong chấn lưu điện tử nhỏ. Chấn lưu điện tử có nhiểu ưu điểm nói trên, nên càng ngày càng được sử dụng rộng rãi thay cho chấn lưu từ.

6. Đèn compact

Mạ̣c dù các đèn phóng điẹn, đèn ớng huỳnh quang được cải tiến không ngừng, đạ̣c tính càng ngày càng tốt hơn, nhưng các linh kiện phụ của đèn, cūng như kích thước của nó làm các đèn này không thuận tiện khi sử dụng chiêu sáng trong nhà.

Việc sử dụng các lớp bột huỳnh quang mịn, chất lượng ánh sáng tớt, hiẹu suất phát quang cao cho phép làm nhỏ dường kính ống, đồng thời phơi hợp với chấn lưu và đuơ̂i xoáy thành một bộ. Bộ đèn này gọi là đèn huỳnh quang compact, gọi ngắn gọn là đèn compact (hình 7.12). Nhờ có đuơí xoáy, đèn compact có thê thay thé trực tiép đèn sợi đót và có hiệu suất phát quang cao hơn (vào khoảng $50 \mathrm{~lm} / \mathrm{W}$), tiết kiệm điẹn năng hơn đèn sợi đớt, tuổi thọ cao hơn (vào khoảng 7000 giờ), đèn compact ngày càng được sử dụng nhiều.

Hinh 7.12

Đạ̣c tính một sơ loại đèn compact

Loại đèn	Chiều dài mm	Cong suắt P W	Quang thong Φ Im	Hiêu suất phât quang $\operatorname{lm} / \mathrm{W}$
Đèn compact bóng hình trụ, đuôi xoáy	148	9	425	47
	158	13	600	46
	168	18	900	50
	178	25	1200	48
Đèn compact bóng hình tròn đuôi xoáy	Đường kính	12	700	58
	165			
	165	18	1000	55
	216	24	1450	60

7.5. ĐÈN PHÓNG ĐIẸN

1. Đèn natri (sodium) thấp áp

Cấu tạo của đèn natri thấp áp là một ớng (đôi khi có hình chữ U) chưa natri (khi nguội có dạng hạt) với ấp suất thấp (khoảng $4.10^{-3} \mathrm{mmHg}$ trong mói trường có khí neon. Khi đèn được mời sau vài phứt, natri bớc hơi phát ra ánh sáng màu vàng da cam.

Các đạ̣c tính của đèn :

- Hiệu suất phát quang cao đạt đến $190 \mathrm{~lm} / \mathrm{W}$ đứng hàng đầu các loại nguồn sáng điện.
- Chỉ sớ thể hiện màu xấu
- Tuổi thọ khoảng 8000 giờ.

Ánh sáng màu vàng da cam nên được dừng nhiều ở các nước xứ lạnh, nhiều sương mù để chiếu sáng đường phớ và xa lộ.

2. Đèn natri (sodum) cao áp

Cấu tạo của đèn natrì cao áp gồm bóng thủy tinh ngoài và óng phóng điện phía trong là bóng thủy tinh alumin, hình ôvan, kích thước tương đối nhỏ. Áp suất hơi Na trong ống phơng diẹn cao khoảng 250 mmHg .

Đèn natri cao áp có đuôi xoáy (hình 7.13)

Ở nhiẹt dộ cao tren $1000^{\circ} \mathrm{C}$ và âp suất cao, đèn natri cao áp phát ra ánh sáng màu trắng âm.

Các đặc tính của đèn :

- Hiẹu suát phát quang đạt tơi $1201 \mathrm{~m} / \mathrm{W}$
- Chỉ só thể hiện màu thắp - Tửi thọ khoảng
10000 giò.

Đèn natri ap suất cao được sủ̉ dụng chủ yêu trong chiéu sáng ngoài trời, cho các khu vự công cọng, dương phơ, băi đồ xe, công trình văn hóa, thê thao...

I-Bóng thủy tinh ngoài
2 - Ống phơng điẹn
3 - Đuôi xoáy

3. Đèn thủy ngân cao áp

Cáu tạo của đèn thủy ngan cao áp gôm bơng thủy tinh ngoài và ơng phong điẹn. Sự phơng diện trong ơng thạch anh có hơi thủy ngân ởáp suát cao từ 1 đến 10 at tạo ra ánh sáng trắng. Ngoài ra mặt trong của bơng thủy tinh ngoài có phủ một lớp bọt huỳnh quang, để các bức xạ từ ngoại biên thành bức xạánh sáng (hình 7.14).

Các dặc tính của đèn thủy ngân cao áp:

- Ánh sáng màu trấng
- Hiẹu suát phát quang 40 đênn $60 \mathrm{~lm} / \mathrm{W}$
- Chi sơ thể hiẹn màu trung bình.

Đèn thủy ngàn cao áp c6 ánh sáng trấng trước đay được sử dụng nhiều trong chiéu sáng công cợn, ngoài trời và trong công nghiệp, nhưng do hiẹu suất phât quang thấp hơn đèn natri cao áp, nên ngày nay đèn natri cao áp đã thay thê dấn.

Hinh 7.14

1. Bóng thủy tinh ngoài
2. Lớp bọt huỳnh quang
3. Ông phóng diện
4. Đuôi xoáy

4. Đèn halogen kím loại

Đay là đèn phóng điện cao áp trong hơi thủy ngân và halogen (iođua natri, iodua tali)

Các đạ̣c tính của đèn :

- Ánh sáng màu rất trấng giơng ánh sáng ban ngày
- Hiệu suất phát quang đạt tới $95 \mathrm{~lm} / \mathrm{W}$
- Chỉ sơ thể hiện màu tương đói tớt
- Tuới thọ khoảng 4000 giờ

Đèn halogen kim loại được sử dụng để chiếu sáng công cợng, các công trình văn hơo thể thao có yêu cấu chất lượng chiếu sáng tớt, có nhu cầu tiếp phát truyền hình màu.

7.6. BỘ ĐÈN

Ít khi người ta sử dụng nguồn sáng điện mọt mình, mà vì lý do kỹ thuật và mỹ thuậ, người ta đặt nguồn sáng vào trong một dụng cụ để phân bớ ánh sáng theo mong muơn, để hạn chế chôi mắt và để bảo vệ nguồn sáng. Dụng cụ ấy gọi là bộ đèn. Có thể nơi bơ đèn gồm nguồn sáng và các loại chụp đèn (phản xạ, khuéch tán, che chắn...). Tùy theo phương thực chiéu sáng, người ta phân bọ đèn thành các kiểu sau:

1. Bộ đèn chiếu sáng trực tiếp (hình 7.15)

Bộ đèn có đặc tính là trên 90% quang thông của bọ đèn hướng xuớng dưới (xuống bề mặt làm viẹc).

Đáy là phương pháp chiêu sáng kinh té, song dề gay chói mất và đọ rọi dễ phân bớ không đờng đểu.

Hinh 7.15

Phương pháp chiêu sáng trực tiếp thường dùng trong công xưởng, nhà kho, văn phòng, cửa hiẹu (trực tiếp mở rộng).
2. Bộ đèn chiếu sáng bán trực tiếp (hình 7.16)

Hinh 7.16
60% đến 90% quang thông của bộ đèn hướng xuống bề mặt làm việc. 10% đên 40% quang thông hương lên trấn, rồi phản xạ ánh sáng phân bó trong phòng. Phương pháp này không kinh tế bằng phương pháp chiếu sáng trực tiếp song đỡ chơi mắt, thường dùng chiếu sáng văn phòng, nhà ở, lớp học...
3. Bộ đèn chiếu sáng hổn hợp (hình 7.17)
40% dến 60% quang thơng hương xuớng bê mặt làm việc, 40% đên 60% quang thông hương lên trần, rồi phạ̉n xạ lại ánh sáng phân bó trong phòng.

Hinh 7.17
4. Bộ đèn chiếu sáng bán gián tiếp (hình 7.18)

Hinh 7.18
10% đênn 40% quang thông hướng xuớng bề mặt làm việc, 40% đến 90% quang thờng hướng lên tràn, rồi phản xạ phân bó trong phòng.

5. Bộ đền chiếu sáng gián tiếp (hình 7.19)

Hinh 7.19
Trên 90% quang thông hướng lên trần rồi phản xạ lại phân bó cho toàn phòng. Phương pháp chiếu sáng này không kinh tế, song có ưu điểm là không gay chơi mắt, rất tiện nghi cho người sử dụng, thường dùng chiéu sáng các phòng biểu diễn, phòng khách...

Dươi đây đưa ra một so dạng bọ đèn (hình 7.20).
*

Hinh 7.20
7.7. THIÉT KÉ CHIẾU SÁNG TRONG NHÀ BÀNG PHƯONG PHÁP HỆ SÓ́ SỬ DỤNG

Thiết kế chiếu sáng trong nhà thực chất là xác định nguồn sáng, sớ lượng bọ đèn, cách bơ trí phân bớ các bộ đèn trên trân. Thiết kế chiéu sáng phải đảm bảo các yeu câu cơ bản sau:

- Đảm bảo đọ rọi E cân thiết.
- Đảm bảo tiẹn nghi cho ngươi sử dụng: độ đờng đểu độ rọ̣i tớt, không gây chói mắt...
- Ngoài ra còn cần chú y các yêu cấu về mỹ thuạt và kinh tê.

1. Hệ số sử dụng k_{sd}

Hệ số sử dụng quang thông đã được nói ở mục 7.1, công thức (7-5). Các nhà kỹ thuật chiéu sáng đã tính sẵn, đưa vào bảng tra lúc tính toán chiéu sáng. Hệ sơ sử dụng phụ thuợc vào kiểu bọ đèn, đạc tính kích thước hình học và đặc tính phản xạ của địa điểm (phòng học, văn phờng, nhà ở, xưởng v.v...), vì thê có rất nhiều bảng, dươi đây đưa ra bảng thông dụng nhất, thường gặp khi thiết kế chiếu sáng trong nhà.

Hệ số sử dụng trung bình cho một sớ kiểu bộ đèn

Phương pháp chiếu sáng Kiểu bộ đèn	$\begin{gathered} \text { Chi } \\ \text { só } \\ \text { K } \end{gathered}$	Hệ số phản xa					
		Trần : 70\%			Trần : 50\%		
		Tường			Tường		
		50\%	30\%	10\%	50\%	30\%	10\%
Chiéu sáng trực tiép Bọ đèn cơng nghiẹp cho bóng huỳnh quang	0,6	0,49	0,42	0,39	0,46	0,42	0,39
	0,8	0,58	0,51	0,48	0,54	0,51	0,48
	1	0,64	0,56	0.53	0,59	0,55	0,53
	1,25	0,69	0,60	0,58	0,62	0,60	0,57
	1,5	0,73	0,64	0,61	0,65	0,63	0,61
	2	0,78	0,68	0,66	0,69	0,67	0,65
	2,5	0,81	0,71	0,69	0,72	0,70	0,69
	3	0,84	0,73	0,72	0,73	0,72	0,71
	4	0,87	0,75	0,74	0,75	0,74	0,73
	5	0,88	0,76	0,76	0,76	0,75	0,74
Chiếu sáng trực tiép Bộ đèn công nghiẹp hai ơng huỳnh quang	0,6	0,31	0,24	0,20	0,28	0,23	0,20
	0,8	0,39	0,31	0,28	0,36	0,31	0,27
	1	0,45	0,37	0,33	0,41	0,36	0,33
	1,25	0,51	0,42	0,38	0,46	0,41	0,38
	1,5	0,56	0,46	0.43	0,50	0,45	0,42
	2	0,62	0,52	0,49	0,55	0,51	0,48
	2,5	0,67	0,56	0,53	0,58	0,55	0,53
	3	0,70	0,59	0,56	0,61	0,58	0,56
	4	0,74	0,63	0,61	0,64	0,62	0,60
	5	0,76	0,65	0,63	0,65	0,64	0,62
Chiêu sáng trực tiép	0,6	0,32	0,27	0,25	0,30	0,27	0,25
Bọ đèn chơn trong trân	0,8	0,38	0,32	0,30	0,35	0,32	0,30
ong huỳnh quang	1	0,42	0,36	0,34	0,38	0,36	0,33

	1,25	0,46	0,40	0,37	0,42	0,39	0,37
	1,5	0,48	0,42	0,40	0,44	0,41	0,39
	2	0,52	0,45	0,43	0,46	0,44	0,43
	2,5	0,55	0,47	0,46	0,48	0,46	0,45
	3	0.57	0,49	0,47	0,49	0,48	0,47
	4	0,59	0,51	0,49	0.51	0,50	0.49
	5	0,61	0.52	0,51	0,52	0,51	0,50
Chiếu sáng bán trực tiếp Bộ đèn cho ống huỳnh quang	0,6	0,20	0,15	0,13	0.18	0,14	0,12
	0,8	0,26	0,20	0,17	0,23	0,19	0,16
	1	0,30	0,24	0,21	0,26	0,22	0,20
	1,25	0,34	0,28	0,25	0,29	0,26	0,23
	1,5	0,37	0,31	0,27	0,32	0,28	0,26
	2	0,42	0,35	0,32	0,35	0,32	0,30
	2.5	0.45	0,38	0,35	0,38	0,35	0,33
	3	0,48	0,40	0.37	0,39	0,37	0,35
		0,51	0,43	0,41	0,41	0,40	0,38
	5	0.53	0,44	0,43	0,42.	0,41	0.40
Chiếu sáng hōn hợp Bộ đèn cho đèn sợi đốt	0,6.	0,37	0,30	0,26	0,33	0,28	0,24
	0,8	0.45	0,37	0,32	0,40	0,35	0,31
	1	0,52	0,42	0,38	0,45	0,40	0,36
	1,25	0,58	0,48	0,44	0,50	0,46	0,42
	1,5	0,63	0,52	0,48	0,53	0,49	0,46
	2	0,69	0,58	0,54	0,59	0,55	0,51
	2,5	0,74	0,62	0,59	0,62	0,58	0,56
	3	0,77	0,65	0,62	0,64	0,61	0,58
	4	0,82	0,69	0,66	0,67	0,65	0,63
	5	0,85	0,72	0,69	0,70	0,67	0,65
Chiếu sáng hỗn hựp 2 ong huỳnh quang	0,6	0,21	0.16	0,13	0,19	0,15	0,13
	0,8	0,28	0,22	0,19	0,24	0,20	0,18
	1	0,33	0,27	0,23	0,29	0,24	0,22
	1,25	0,38	0,31	0,27	0,32	0,28	0,25
	1,5	0,42	0,35	0,31	0,35	0,32	0,29
	2	0,48	0,40	0,37	0,40	0,36	0,33
	2,5	0,53	0,44	0,41	0,43	0,39	0,37
	3	0,56	0,47	0,44	0,45	0,42	0,39
	4	0,60	0,51	0,48	0,47	0,45	0,43
	5	0,63	0,53	0,51	0,49	0,47	0,45

2. Các bược thiết kế chiếu sáng trong nhà

Xác định các kích thước của địa điểm (hình 7.21)

Hinh 7.21
chiều rộng a ; chiều dải \mathbf{b}; chiều cao từ trần đến nển H , chiều cao đê đén bề mặt làm việc $\mathrm{h} \approx \mathrm{H}-\mathrm{h}^{\prime}-0,85$ (hình 21a)

- Xác định chì só địa điểm K

$$
\begin{equation*}
K=\frac{a b}{h(a+b)} \tag{7-14}
\end{equation*}
$$

- Xác định hệ phản xạ
hệ sơ phản xạ trần ρ_{i}
hẹ số phản xạ tường ρ_{3}
- Xác định độ rọi \mathbf{E} cần thiét.

Giá trị độ rọi theo tiêu chuẩn của mōi nước. Dưới đây đưa ra một sớ trị s E để tham khảo khi thiết kê.

Giao thông, cửa hàng, kho tàng	$100 \mathrm{~lx}-150 \mathrm{~lx}$
Phòng ăn, cơ khí nơi chung	$200 \mathrm{~lx}-300 \mathrm{~lx}$
Phòng học, phòng thí nghiệm	$300 \mathrm{~lx}-500 \mathrm{~lx}$
Phòng vẽ, siéu thị	$500 \mathrm{~lx}-750 \mathrm{~lx}$
Lắp ráp thiết bị điện - điện tử	$500 \mathrm{~lx}-750 \mathrm{~lx}$
Phòng triển lãm	$300 \mathrm{~lx}-500 \mathrm{~lx}$

Nhà ở	$200 \mathrm{~lx}-300 \mathrm{~lx}$
Khách sạn	$200 \mathrm{~lx}-300 \mathrm{~lx}$
Phòng đọc thu viện	$300 \mathrm{~lx}-500 \mathrm{~lx}$
Phân xưởng may	500 lx
Làm việc với chi tiết nhỏ	1000 lx
Công nghiẹ̣p màu	1000 lx

- Xác định nguồn sáng điẹn
- Xác định phương pháp chiếu sáng và bộ đèn.
- Xác định quang thơng tơng Φ_{t}
- Xác định só bợ đèn.

Xác định bớ trí phân bớ đèn (hình 7.21a)
Ví dụ 7: Tính toán chiếu sáng cho phòng học

- Kích thước phơng học : rộng $a=6,85 \mathrm{~m}$; dải $\mathrm{b}=8,6 \mathrm{~m}$, chiều cao từ trần đến nền $\mathrm{H}=3,9 \mathrm{~m}$.

Đèn chôn vào trần, khoảng cách từ đèn đến bề mặt làm việc $\mathbf{h}=\mathbf{H}-0,85 \mathrm{~m}$ (hình 7.22a)

$$
h=3,9-0,85=3,05 \mathrm{~m}
$$

- Chi so kích thước

$$
K=\frac{a b}{h(a+b)}=\frac{6,85.8,6}{3,05(6,85+8,6)}=1,25
$$

- Xác định hệ só phán xạ :

Trân trấng sáng $\quad \rho_{1}=0,7$
Tường xanh nhạt $\rho_{3}=0,5$

- Xác định trị so đọ rọi.

Lóp học chọn $\mathrm{E}=300 \mathrm{~lx}$

- Chọn nguö̀n sáng: đèn ớng huỳnh quang.
- Chọn bộ đèn huỳnh quang, chiéúu sáng trực tiếp chọn vào trấn nhà.
- Xác định quang thông tổng ϕ_{t} cho toàn lớp học.

$$
\Phi_{1}=\frac{\mathrm{ES}}{\mathrm{k}_{\mathrm{sd}}} \delta
$$

$S=a b$ là diện tích phòng học.
δ là hệ só bù quang thơng, do quang thông đèn giảm theo thời gian ; $\delta=1,2 \div 1,6$.
Lớp học chọn $\delta=1,3$

Hệ sớ sử dụng k_{xd} tra bảng hệ sớ sử dụng ứng với bộ đèn trực tiếp chôn vào $\mathrm{K}=1,25$, phản xạ trần $\rho=0,7$; phản xạ tường $\rho=0,5$
ta được $\mathbf{k}_{\mathrm{sd}}=0,46$

$$
\Phi_{1}=\frac{300.6,85.8,6}{0,46} \cdot 1,3=49945 \mathrm{~lm}
$$

- Xác định só bóng đèn N , só bộ đèn.

Chọn đèn huỳnh quang thế hệ 2 , ánh sáng ban ngày (Xem bảng thông só huỳnh quang)

$$
\begin{aligned}
& \Phi_{\text {denn }}=3200 \mathrm{~lm} \\
& \mathrm{~N}=\frac{\Phi_{\mathrm{t}}}{\Phi_{\text {dèn }}}=\frac{49945}{3200}=15,6 \approx 16 \mathrm{ong}
\end{aligned}
$$

Chọn bộ đèn có 2 ớng, sớ bộ đèn là

$$
\frac{\mathrm{N}}{2}=\frac{16}{2}=8 \mathrm{~b} \text { b đèn }
$$

- Bó trí các bộ đèn như hình 7.22 b

a)

b)

Hinh 7.22

- Kiểm tra lại dộ đồng dều đợ rọi.

Theo tiêu chuẩn để đảm bảo đồng đều độ rọi, khoảng cách m giữa 2 bộ đèr không được vượt quá $1,5 \mathrm{~h}$

$$
m_{\max }=1,5 \cdot 3,05=4,575 \mathrm{~m}
$$

Trong thiết ké ta có khoảng cách $3,8 \mathrm{~m}$.
Vậy thỏa mãn điều kiện đồng đêu độ rọi.

7.8. PHƯONG PHÁP CÔNG SUẤT ĐƠN VỊ p (W/m²)

Cong suất đơn vị p là tỷ sớ giữa tổng công suất điện toàn bộ bóng đèn P đật trong phòng chia cho diện tích S của phòng

$$
\begin{equation*}
\mathrm{p}=\frac{\mathrm{P}}{\mathrm{~S}} \quad \mathrm{~W} / \mathrm{m}^{2} \tag{7-16}
\end{equation*}
$$

Phương pháp công suất đơn vị chủ yấu dựa vào các bảng công suất đơn vị đã tính sẵn, mà không cần trình tự tính toán như phương pháp hệ só sử dụng, phương pháp này, sau khi tra được p ta tính được công suất tổng của toàn phòng

$$
\begin{equation*}
P=p S \tag{7-17}
\end{equation*}
$$

Dựa vào công suất của đèn, sẽ xác định được số bóng đèn.

$$
\begin{equation*}
\mathrm{N}=\frac{\mathrm{P}}{\mathrm{P}_{\text {dèn }}} \tag{7-18}
\end{equation*}
$$

Từ đó xác định được sơ bộ đên, và phân bố các bộ đèn trên trần như vf dụ 7
Chú ý rằng, để tra được p cần phải có các thông số sau: kiểu đèn, bộ đèn, độ rọi, chiều cao treo đèn h, và diện tích phòng.

Chỉ nên dùng phương pháp công suất đơn vị khi thiếc kế sơ bợ, không yêu câu chính xác cao, thiết kế cho các phòng không lớn.

CÂU HỎI ÔN TẬP VÀ BÀI TẬP

7.1. Đ!̣nh nghïa các đại lượng : quang thông Φ, cuờng độ sáng I , độ rọi E . Nêu tên và ký hiệu đơn vị đo các đại lượng trén.
7.2. Một bế mạt có điện tich $S=70 \mathrm{~m}^{2}$. có hệ sớ phản xạ $\rho=0,3$, nhận được quang thông $\Phi=175001 \mathrm{~m}$. Hãy tînh độ rọi trung bình E trên bể mặt và quang thông phản xạ Φ_{p}.

Đáp só: $E=250 \mathrm{Ix}$; $\Phi_{\rho}=5250 \mathrm{~lm}$
7.3. So sánh ưu nhược điểm của đèn sợi đốt và đèn huỳnh quang. Cho y kiến về sử dụng 2 loại đèn này đé̉ chiếu sáng trong nhà.
7.4. Trình bày nguyên lỳ làm việc của đèn huỳnh quang, đèn phóng điện Na , đèn phóng điện Hg .
7.5. So sánh ưu nhược điểm của đèn Na cao áp và đèn cao áp Hg . Cho y kién vá̛ sừ dụng 2 loại đèn này đẻ̉ chiếu sáng ngoài trời (đường phố, quảng truờng v.v...)
7.6. Vi sao đèn Na thấp áp có hiệu suất phát quang cao. Đánh giá vế chắt lự̛̣ng ánh sáng của loại đèn này.
7.7. Nêu những ưu, nhược điểm của đèn phóng điện halogen kim loại. Loại đè này thường đ̛ược sử dụng để chiếu sáng các cỡng trình gì ?
7.8. Hảy nêu các chức năng của bộ đèn
7.9. Hãy phân loại các bộ đèn theo phương thức chiễu sáng.
7.10. Ưu và nhược điểm của bộ đèn chiếu sáng trực tiếp
7.11. Ưu nhược điểm của bộ đèn chiếu sáng gián tiếp. Trong trường hợp nà ngườl ta sử dụng loại bộ đén này.
7.12. Một phòng dài 9 m , rợng 6 m , cao $2,85 \mathrm{~m}$ được chiếu sáng bẳng bộ đè̀n bá trực tiếp hệ sớ sử dựng $k_{\text {ud }}=0,4$. Đợ rọi yẻu cả̛u $E=500 \mathrm{~lx}$; hệ số bù quang thông δ 1,3.

Xác định quang thóng tởng của các bóng đèn trong phòng Φ_{1}.
Đáp só: $\Phi_{\mathrm{t}}=87750 \mathrm{~m}$
7.13. Một phân xưởng dải 65 m , rộng 28 m , cao $7,5 \mathrm{~m}$. Người ta dùng bộ đèn chié̛ sáng trực tiếp có hệ sớ şử dụng $\mathrm{k}_{\mathrm{ad}}=0.71$. Người ta dùng 44 bóng đèn cao áp Hg c công suất $P=400 \mathrm{~W}$, quang thông $\Phi=230001 \mathrm{~m}$ tạo thành lưới bố trí đèn ở trẩn để phà bó ánh sáng đởng đểu cho toàn phân xưởng. Cho biết hệ só bù quang thông $\delta=1,3$ Hãy xác định độ rọ̣ yếu cẳu trên bể mật làm viẹ̉c khi thiẹ̛́t kế.

Đáp só: $E=303,68 \mathrm{~lx}$

Chuong 8

TÍNH TOÁN MẠNG ĐIỆN

8.1. KHÁI NIẸM CHUNG VỀ MẠNG ĐIỆN

1. Chức năng của mạng điện

Điện năng sản xuất ra ở các nhà máy điện có điện áp từ 6 kV đến 22 kV . Từ các nhà máy, ta có các trạm biên áp, nâng điẹn áp lên cao để truyền tải điện nāng, và đến nơi tiêu thụ, ta phải giảm điện áp xuớng để sử dụng. Như vậy sẽ hình thành mạng điện với nhiều cấp điện áp khác nhau để truyền tải và phân phới điện năng từ nguốn đến tận nợi tiêu thụ. Theo cáp điện áp người ta phân biệt:

Mạng điện thấp (hạ) áp (LV)
Mạng điẹn trung áp (MV)
Mạng điẹn cao áp (HV)
Mạng điẹn siêu cao áp (EHV)
Mạng diẹn cực cao áp (UHV)

$$
\mathrm{U} \leq 1 \mathrm{kV}
$$

$$
1 \mathrm{kV}<\mathrm{U} \leq 66 \mathrm{kV}
$$

$$
66<\mathrm{U} \leq 220 \mathrm{kV}
$$

$330 \mathrm{kV}<\mathrm{U} \leq 750 \mathrm{kV}$

$$
\mathrm{U} \geq 800 \mathrm{kV}
$$

Mạng điện có chức năng truyên tải và phân phơi điẹn năng.
Mạng điện có cấp điẹ̣n áp từ 110 kV trở lên thường gọi là mạng truyền tải, mạng điện từ 66 kV trở xuớng thường gọi là mạng điện phan phới. Trên hình 8.1 cho ta sơ đồ tởng quát về mạng truyến tải và mạng phân phơi.

2. Tải của mạng điện

Tảa của mạng điện bao gồm tất cả các phân tử tiêu thụ điện năng trong các ngành sản xuắt và đời sơng: công nghiệp, nồng nghiệp, giao thơng vận tải, sinh hoạt, thương mại dịch vụ ... v..v .

Công nghiệp là khách hàng tiêu thụ điện lớn nhắt, bao gồm các xí nghiệp, nhà máy lớn nhỏ, các tổ hợp sản xuất... chưng đều cấn sử dụng điện để tạo ra các sản phả̉m ngày càng nhiều và chất lượng cao.

Sau công nghiệp, nông nghiệp tiêu thụ điện rất lớn và đa dạng: phục vụ sinh hoạt cho 80% dân số nước ta hoạt động sản xuất nông nghiệp, phục vụ tưới tiêu, chể biến nông sản, xay xát, chế tạo và sửa chữa nông cụ, chăn nuôi, ...

Hinh 8.1

Ngoài công nghiệp, nông nghiệp, giao thơng vận tải, điện phục vụ cho sinh hoạt và thương mại dịch vụ cung khá lớn. Ở nước ta, năm 1994, điện nạng’ tiêu thụ phân bơ cho các ngành như sau :

Công nghiẹp	$44,4 \%$
Nông nghiẹp	$14,6 \%$
Giao thông vận tải	$0,8 \%$
Sinh hoạt	$32,1 \%$
Thương mại, dịch vụ	$8,1 \%$
	100%

Tùy theo tính chất quan trọng và yeu câu lien tục cung cấp điện cho tải, các họ tiêu thụ điẹn được phân thành ba loại :

Hộ loại 1 Ià những hộ tiêu thụ điện quan trọng nhất, nếu ngừng cung cấp điện sẽ̃ gày ra nguy hiểm đến tính mạng của con người, ảnh hưởng lớn đến chính trị. gây thiệt hại nhiếu vể kinh tê (hư hỏng thiết bị, hỏng hàng loạt sản phả̉m, rới loạn quá trình công nghệ phức tạp ...). Ví dụ các bệnh viện lớn, đài phát thanh truyền hình, các lò luyện kim, thông gió trong hâm lò và trong các nhà máy hơa chất độc hại, sân bay...

Họ loại 2 là những hộ tieu thụ điện ît quan trọng hơn, nêu ngừng cung cấp điện chỉ gây thiẹt hại kinh tế do quá trình sản xuất bị gián doạn. Ví dụ các nhà máy cong cụ, nhà máy dệt, các trường học ...

Hộ loại 3 là tất cả những hộ tiêu thụ không thuộc hai loại trên. Ví dụ điện sinh hoạt dân dụng. các phân xưởng sản xuât không theo dây chuyền ...

Việc xác dịnh loại hộ dùng điẹn rất quan trọng để quyết định phương án cung cáp điện.

3. Các yêu cầu đối với mạng điện

Khi thiét ké cấp điẹn cho các hộ dùng điẹn cần thỏa măn các yeu câu sau đây :

a) Đọ tin cạy cáp diện

Mức độ đảm bảo liên tực cấp điện tùy thuộc vào tính chất và yêu câu của tả̉, nghĩa là phụ thuộc vào loại hộ dưng điện. Đới với họ loại 1 phải dảm bảo liên tục cáp điẹn ở mức cao nhất, nghīa là với bất kỳ tình huống nào cũng không để mát điện. Muốn vậy hộ loại 1 phải được cấp điẹn từ hai phía đến bẳng hai nguốn khác nhau, mọt nguồn từ lưới diẹn quóc gia, một nguôn từ máy phát điện dự phòng. Những đơi tượng như nhà máy, xí nghiệp, tớt nhất là đạt máy phát điẹn dự phòng, khi mất điện lưới sẽ dùng điện máy phát cấp điện cho những tải quan trọng như lò thép, phân xưởng sản xuât chính...

b) Chát lự̛ng diện năng

Chất lượng điện được đánh giá bằng hai chỉ tiêu là tần sơ và điện áp. Chỉ tiêu tân số do cơ quan điếu khiển hệ̣ thơng điện quớc gia điều chinh, nguời thiét kế cấp điện phải đảm bảo điẹn áp cho khách hàng. Nơi chung điẹn áp ở lưới trung áp và hạáp chỉ cho phêp dao động quanh giá trị địinh mức $\pm 5 \%$. ở một sơ tài yêu cầu chất lượng điẹn áp cao như điện tử, cơ khí chính xác, chiéu sáng chì cho phép dao đọng diện áp $\pm 3 \%$.

c) Kinh té

Khi thiét ké phải so sánh nhiéu phương án, môi phương án co ưu, nhược điểm riêng, thường có mâu thuẵn giữa mặt kinh tế và ky̆ thuật.

Một phương án có đọ tin cạy và chất lượng điện năng cao thương đắt tiền, không kinh té.

Hai đại lượng quan trọng để đánh giá kinh té của mọt phương án là vốn đâu tư và phí tơn vận hành. Phương án kinh tế khong phải chỉ xét vớn đầu tư ít nhất, mà phải xét đông thời cả hai đại lượng trên, để thời hạn thu hời vớn đấu tư là sớm nhắt.

d) An todn

Công trình cấp điện phải đảm bảo vạn hành thuạn tiện, hợp lý, an toàn cho người vận hành và người sử đưng, an toàn cho các thiết bị và toàn bộ công
trình．Ṅgoài việc tính toán chính xác，chọn đúng các thiết bị và khí cụ điện， còn phải nấm vững những quy định an toàn．

Ngoài bớn yêu càu cơ bả̉n trển，còn cấn chú ý mạng điện thạt đơnn giản， dê thi công，dễ vận hành và đễ phát triển tải sau này．

8．2．SO ĐỒ MANG CẤP ĐIỆN CHO XÍ NGHIẸP VÀ CO QUAN

Tùy theo quy mơ của hộ tiêu thụ điẹn，ta chọn sơ đô mạng điện cấp điện cho phù hợp．

Trước khi đi vào các sơ đồ cụ thể，ta làm quen với cách ký hiệu thường dùng trong các bản vẽ so đờ điẹn．

Ký hiệu các phần tử trên sơ đồ điẹn

Thí̛tự	Tên phần tư	Kí hiẹu
1	Hệ thớng điện（H）	H．\dagger
2	Máy phát điẹn（F）	（F）θ
3	Trạm biên áp（TBA）	\square
4	Trạm phân phơi，trạm cắt（TPP）	田田
5	Máy biến áp（BA）	8
6	Tủ phân phơi（TPP）	日田
7	Tủ đọng lực（ TĐL）	［

8	Tủ chiêu sáng (TCS)	\square
9	Dao cách ly, cầu dao (DCL), (CD)	\dagger
10	Câu chì (CC)	ゅ $\square_{\text {号 }}$
11	Áptômát (A)	$\lambda 1{ }^{\prime}$
12	Công tắc (đơn, kép)	σ \% σ°
13	Bảng điẹn	\square
14	Ổ và phích cắm	$\wedge \rightarrow-$
15	Đọng cơ điẹn (P)	(B) \bigcirc
16	Thanh góp (thanh cái) (TG)	
17	Day trung tính	
18	Dây dẫn	-
19	Dây dẫn có ghi rõ số dây	——H
20	Đèn sợi đốt	\otimes

21	Đèn óng huỳnh quang	$\square-\square$ ¢
22	Chuông	\square
23	Nơi đât	$\stackrel{1}{2}$
24	Đường cáp	
25.	Quạt điện	$\infty \quad 8$

1. Một tở sản xuất, một xưởng sản xuất nhỏ hoặc sửa chữa tiêu thụ công suất vài chục kilooát thì lấy điện bằng dường dây thấp áp từ trạm biến áp gần nhất (hình 8.2) mà không cần phải đặt một trạm biến áp riêng.

Hinh 8.2. So đờ cấp điện cho xương sản xuất

1. tủ phân phơi ; 2. Tủ động jực ; 3. tủ chiếu sáng ; 4. động cơ điện ; 5. đèn điện
2. Mọt xí nghiệp quy mô nhỏ, trường học, bệnh viện... công suất tiêu thụ khoảng vài trăm kilơoát, nhất thiết phải xây dựng một trạm biến áp riêng.

Sơ dô mạng điẹn cấp điện gồm một đường dây trung áp nhận điện từ hệ thớng (trạm biến áp trung gian, hoặc đường day trung áp gấn nhất), một trạm biến áp (xí nghiệp, bệnh viện, trường học...), mọt mạng lưới thấp áp cấp điện (cho tải trong xí nghiệp, cơ quan) (hình 8.3).

Đói với xí nghiệp quy mô vừa, ta có thê xây dựng 2 hoạ̣c 3 trạm biến áp, đưa trực tiếp đường day trung áp đến

Hinh 8.3. So dô cáp điẹn có trặ BA tiêng 1.Trặ biễn áp ; 2.Tủ phan phới ; 3.Tü đọng lục ; 4.Tù chiếu sáng. các trạm (hình 8.4).

Hinh 8.4. Sơ đó cáp diẹn cho xí nghiệp có quy mo vừa

1. Trặ $B A ; 2$. Tủ phân phói ; 3. Tủ dộgg lực ; 4. Tủ chiếu sáng.
2. Đơi với các công ty lơn, cong suất tieu thụ lên tới hàng vạn kilooát, bao gờm nhiều phan xưỡng. Trong trường hợp này mạng điẹn sẽ 1 ơn và phức tạp hơn. Người ta xay dựng mọt trạm phân phơi trung tam tại nhà máy, trạm phan phới trung tam nhạn điện từ hẹ thơng bằng đường day trung áp đưa điện đến trạm biến áp của phân xưỡng. Phân xưởng lớn có thẻ đạt riêng mêt trạm biến áp, vài ba phân xưởng nhỏ có thể dùng chung một trạm biến áp. So lượng trạm biên áp tùy thuộc vào công suất và vị trí giữa chúng (hình 8.5).

Hinh 8.5. Sơ đờ cấp điện cho họ có cong suất tieu thụ lớn.
1.Trạm phân phối trung tam ; 2. Trạm biến áp phân xưởng ;
3. Tủ̉ phân phơi phân xưởng; 4. Tủ đợng lực ; 5 . Tủ chiếu sáng

8.3. SO ĐỒ MANG ĐIẸN HẠ ÁP

1. Mạng điện sản xuát

Ta xét mạng điện cung cấp điện cho các đợng cơ trong một phân xưởng. Người ta đặt mợt tủ phân phới nhận điện từ thứ cấp máy biến áp (hình 8.6). Từ tủ phân phới cấp điện cho 5 tủ động lực và một tủ chiéu sáng.

Mỗi tủ động lực cấp điện cho 6 động cơ.
Tủ phân phơi có 1 áptơmát tổng, thanh gớp và 6 áptomát cho 6 nhánh tới 5 tủ động lực và 1 tủ chiếu sáng.

Hinh 8.6. Sơ dơ cấp điện cho động cơ trong mợt phân xưởng 1. Tủ phân phới ; 2,5. Tử dộng lực ; 3. Tới tủ chiếu sáng ; 4. Tới các động cơ Tủ đọng lực có cấu dao, câu chì tởng đâu vào và 6 câuu chì nhánh đâu ra. cụm dèn.

2. Mạng điện sinh hoạt khu vực đô thị

Mạng diẹn sinh hoạt khu vực đô thị thường dược cấp từ trạm biến áp có mọt máy biến áp, đương điện cao, hạ áp nên đi cáp và khơng nên dài quá, dùng trạm cơng suât nhob, đưa điẹn đến gân tải hơn là dùng trạm cong suât lớn cho một khu rọng. Sở dĩ như vạy vì giảm bớt tởn thất điện năng và giảm bớt tởn thất diện áp trên đường day, quản ly̆ và vạn hành tơt, đảm bảo được các yêu câu về an toàn, độ tin cạy và chất lương diện năng tơt hơn. Vể thiét bị và khí cụ diẹnn, néu co điéu kiện vể kinh phí, nen chọn loại tơt, tin cạy và hiẹn đại.
a) Cung cáp diẹn cho mọt nhd tạp thé

Ta xét mạng điẹn cấp điẹn cho một nhà 4 tấng, mõi tâng có 9 căn hộ.
Đường day điẹn hạ áp từ máy biến áp đên nhà tạ̣p thể. Tại nhà tập thể có một tủ điện. Tủ diẹn của nhà tập thể gồm một áptơmát tởng đâuu vào và 4 âptômát đầu ra đến các tủ công tơ cho các tâng. Tại các tầng sẽ có một tủ công tơ. Tủ̉ công tơ tầng có 1 cầu dao đâu vào, 9 cấu dao, 9 công tơ, 9 câu chì đầu ra đén 9 căn họ̣ (hình 8.7).
b) Cung cáap điện cho mọt khách sạn

Khách sạn cơ một trạm biến áp riêng, tùy theo sô tâng và công suất diện tiéu thụ để chọn phương án các tủ diẹn, tủ phân phơi.

Nêu so tàng ít ta khong cần đặ tủ phan phơi mà chỉ cần đợt tủ điện riêng cho mỡi tầng. Dưới đay ta xét tủ diẹn cho môi tầng.

Tủ. điện tầng gồm có mọt áptômát tổng đầu vào, các aptomát đầu ra đến câc phân khu (hình 8.8) bằng các đường trục. Từ các đường trục, dùng các hộp nối đưa điện vào các phòng. Trong môi phòng thường dùng một bảng điện, 3 áptômat dùng riêng cho điều hơa không khí 1, bình nước nóng 1 và 1 cho các tải còn lại (đèn, tivi...). Bảng điện và tấ cả đường cáp, đường dây điện đặt chìm trong tường.

Nếu khách sạn có 2 tầng, thì có đường dây liên thông giữa tủ điện của 2 tầng với nhau.

Hinh 8.7
Mạng diện nhà 4 tấng

Hinh 8.8. Tủ điện mōi tấng khách sạ̣n

8.4. XÁC ĐỊNH CÔNG SUẤT TÍNH TOÁN

1. Xác định công suất tính toăn cho các xí nghiệp

a) Tải dọng lưc

Công suất tính toán động lực được tính theo công suất dặt P_{d} của phân xưởng (tởng công suất định mức của các thiết bị̂).

Công suất tính toán cho các tải động lực là

$$
\begin{align*}
P_{\mathrm{dl}} & =\mathrm{k}_{\mathrm{nc}} \mathrm{P}_{\mathrm{d}} \tag{8-1}\\
\mathrm{Q}_{\mathrm{dl}} & =\mathrm{P}_{\mathrm{dl}} \operatorname{tg} \varphi \tag{8-2}
\end{align*}
$$

k_{nc} là hệ số nhu cầu tra só tay kỹ thuật, só liệu thớng kê của phân xưởng; $\mathrm{k}_{\mathrm{nc}}<1$.
P_{u} là công suất đặt của phân xường.
$\cos \varphi$ là hệ sớ công suất tính toán, tra ở sổ tay kỹ thuật. Từ giá trị $\cos \varphi$ ta suy ratg φ.

b) Tải chiếu sáng

Tải chiếu sáng thường được tính toán theo công suất chiếu sáng trên một đơn vị diện tích P_{0}

$$
\begin{equation*}
P_{c s}=p_{0} S \tag{8-3}
\end{equation*}
$$

trong đó : S là diện tích gian nhà, phån xưởng.., m^{2}.
P_{0} lả công suất chiếu sáng trên mợt m^{2}, đơn vị là $\mathrm{W} / \mathrm{m}^{2}$
P_{0} tra ở sổ tay kỹ thuật, phụ thuộc độ rọi E , chiều cao đèn, loại đèn.

$$
\begin{equation*}
Q_{c s}=P_{c \mathrm{~s}} \operatorname{tg} \varphi \tag{8-4}
\end{equation*}
$$

Đới với đèn sợi đớt

$$
\cos \varphi=1 ; Q_{\mathrm{cs}}=0
$$

Đới với đèn huỳnh quang không có tụ điện bù

$$
\cos \varphi=0,45 \div 0,55
$$

Trường hợp có tụ điện bù, hoặc dùng chấn lưu điện tử thì $\cos \varphi=0,85 \div 0,9$.
Từ đó ta tính được̣ công suất tính toán cho phan xưởng

$$
\begin{align*}
& P_{\mathrm{tpx}}=P_{\mathrm{dl}}+P_{\mathrm{cs}} \tag{8-5}\\
& Q_{\mathrm{tpx}}=Q_{\mathrm{dt}}+Q_{\mathrm{cs}} \tag{8-6}\\
& S_{\mathrm{tlpx}}=\sqrt{P_{\mathrm{tl}}^{2}+Q_{\mathrm{tt}}^{2}} \tag{8-7}
\end{align*}
$$

Ta cũng có thể tính S_{11} thông qua hệ sớ công suất trung bình.

$$
\cos \varphi_{t b}=\frac{\mathrm{P}_{1}+\mathrm{P}_{2}+\cdots+\mathrm{Pn}}{\frac{\mathrm{P}_{1}}{\cos \varphi_{1}}+\frac{\mathrm{P}_{2}}{\cos \varphi_{2}}+\cdots+\frac{\mathrm{P}_{\mathrm{n}}}{\cos \varphi_{\mathrm{n}}}}
$$

trong đó $P_{1}, P_{2} \ldots P_{n}$ là công suất tới đa mà thiết bị yêu cẩu, ứng với $\cos \varphi_{1}$, $\cos \varphi_{2} \ldots \cos \varphi_{n}$.

Công suất biểu diễn tính toán

$$
\begin{equation*}
S_{\mathrm{tpx}}=\frac{\mathrm{P}_{\mathrm{ttpx}}}{\cos \varphi_{\mathrm{tb}}} \tag{8-9}
\end{equation*}
$$

Để tính công suất tính toán cho xí nghiẹ̣p ta phải xét đến hệ số đồng thời $\mathrm{k}_{\mathrm{t} 1}$. Hệ só đồng thời $\mathrm{k}_{\text {di }}$ xêt đến tải các phân xưởng không đồng thời cực đại

$$
\begin{align*}
& \mathrm{P}_{\mathrm{txN}}=\mathrm{k}_{\mathrm{dt}} \sum_{1}^{\mathrm{n}} \mathrm{P}_{\mathrm{tpx}} \tag{8-10}\\
& \mathrm{Q}_{\mathrm{txN}}=\mathrm{k}_{\mathrm{dt}} \sum_{1}^{\mathrm{n}} \mathrm{Q}_{\mathrm{upx}} \tag{8-11}
\end{align*}
$$

trong đó n là sớ phân xưởng của xí nghiệp

$$
\begin{align*}
& S_{u \times N}=\sqrt{P_{u X N}^{2}+Q^{2}{ }_{u X N}} \tag{8-12}\\
& \cos \varphi_{X N}=\frac{P_{u X N}}{S_{u X N}} \tag{8-13}
\end{align*}
$$

Hẹ só đồng thời thường láy là

$$
\begin{array}{ll}
\mathrm{n}=2 \div 4 & \mathrm{k}_{\mathrm{dt}}=0,9 \div 0,95 \\
\mathrm{n}=5 \div 10 & \mathrm{k}_{\mathrm{dt}}=0,8 \div 0,85 .
\end{array}
$$

Ví dụ 1: Tính công suât tính toán P_{u}, Q_{u}, S_{u} cho mộ phân xường có các só liệu sau: tởng công suất dịnh mức các thiết bị bằng 950 kW ; diẹn tích phan xưỡg $\mathrm{S}=$ $2500 \mathrm{~m}^{2}$ hẹ sô nhu cấu $\mathrm{k}_{\mathrm{nc}}=0,75$; hẹ sơ công suất $\cos \varphi=0,85$; cơng suất chiéu sáng $\mathrm{p}_{\mathrm{o}}=15 \mathrm{~W} / \mathrm{m}^{2}$.

Lời giải : Cong suât tính toán động lực

$$
P_{\mathrm{dl}}=\mathrm{k}_{\mathrm{nc}} \mathrm{P}_{\mathrm{d}}=0,75.950=712,5 \mathrm{~kW}
$$

Công suất chiếu sáng phan xưởng

$$
P_{\mathrm{cs}}=\mathrm{p}_{0} \mathrm{~S}=15.2500=37,5 \mathrm{~kW}
$$

Công suất tính toán phân xường

$$
\begin{aligned}
\mathrm{P}_{\mathrm{n}} & =\mathrm{P}_{\mathrm{al}}+\mathrm{P}_{\mathrm{Cs}} \approx 712,5+37,5=750 \mathrm{~kW} \\
\cos \varphi & =0,85 \quad, \operatorname{tg} \varphi=0,62 \\
\mathrm{Q}_{\mathrm{n}} & =\mathrm{P}_{\mathrm{t}} \operatorname{tg} \varphi=750.0,62=465 \mathrm{kVAr}
\end{aligned}
$$

$$
\mathrm{S}_{u}=\sqrt{\mathrm{P}_{\mathrm{u}}{ }^{2}+\mathrm{Q}_{\mathrm{u}}{ }^{2}}=\sqrt{750^{2}+465^{2}}=882,5 \mathrm{kVA}
$$

Ví dụ 2 : Một nhà máy có 8 phân xường có số liệu sau:
Công suât tính toán phân xưởng

Thứ tư phan xương	$\mathrm{P}_{\mathrm{ut}}(\mathrm{kW})$	$\mathrm{Q}_{\mathrm{i}}(\mathrm{kVAr})$	$\mathrm{S}_{\mathrm{u}}(\mathrm{kVA})$
1	800	500	943,4
2	750	475	887,8
3	500	600	781
4	500	650	820
5	250	250	353,5
6	650	450	790,5
7	65	80	103
8	150	100	180,3
Tóng	3665	3105	

Tính công suất tính toán cưa nhà máy và hệ só công suất nhà máy.
Lờ giải : Công suất tác dụng tính toán toàn nhà máy

$$
\begin{gathered}
\mathrm{P}_{\mathrm{tanm}}=\mathrm{k}_{\mathrm{dt}} \sum_{1}^{8} \mathrm{P}_{\mathrm{pxi}}=0,8.3665=2932 \mathrm{~kW} \\
\mathrm{Q}_{\mathrm{tunm}}=\mathrm{k}_{\mathrm{da}} \sum_{1}^{8} \mathrm{P}_{\mathrm{pxi}}=0,8 \cdot 3105=2484 \mathrm{kVAr} \\
\mathrm{~S}_{\mathrm{tum}}=\sqrt{\mathrm{P}_{\mathrm{tumm}}^{2}+\mathrm{Q}^{2} \mathrm{tumm}}=\sqrt{2932^{2}+2484^{2}}=3842,8 \mathrm{kVA}
\end{gathered}
$$

Hẹ số cơng suất nhà máy

$$
\cos \varphi_{\mathrm{nm}}=\frac{P_{\mathrm{ttnm}}}{S_{\mathrm{ttnm}}}=\frac{2932}{3842,8}=0,763
$$

2. Xác định công suất tính toán cho tả̉ sinh hoạt

Ta có thể thực hiện theo hai cách dưới đay :
a) Công suât tinh toán tính theo tông công suất dịnh míc của các thiết bị dùng diẹn

$$
\begin{equation*}
\mathrm{P}_{\mathrm{n}}=\mathrm{k}_{\mathrm{dt}} \sum_{1}^{\mathrm{n}} \mathrm{P}_{\mathrm{dmi}} \tag{8-14}
\end{equation*}
$$

trong đó: $\quad \sum_{i}^{n} P_{\text {đmi }}$ là tởng công suất định mức của các thiết bị. k_{dt} là hệ só đồng thời.
b) Công suấ tính toán tính theo công suât đơn vị p (suât tải tinh toa Suất tải tính toán là kết quả thớng kê, khi thiết kế, trực tiếp tra ở bảng

Suất tải sinh hoạt cho một hộ

Mức sớng khu dân cu	Cong suất đặt mợt hộ (kW)	$p_{\text {vho }}$	$(\mathrm{kW} / \mathrm{họ})$
Thấp	$2-3$	$1-1,5$	
Trung bình	$4-5$	$2-2,5$	
Khá giả	$6-8$	$3-4$	

Suất tải sinh hoạt cho một phòng khách sạn

Loại khách sạn	Công suất đặt phòng (kW)	poks (kW/phòng)
Nhà nghì	$2-3$	$1-1,5$
Khách sạn trung bình	$5-7$	$2-3$
Khách sạn sang trọng	$8-10$	$4-5$

Suất tải cho khu vực văn phòng

Mức trang bị điện văn phòng	$\mathrm{P}_{\text {oup }}\left(\mathrm{kW} / \mathrm{m}^{2}\right)$
Không cơ điều hòa không khí	$20-25$
Co điều hòa khong khí	$120-150$

Suất tải cho khu vực thương mại

Loại nhà hàng	Potm $\left(\mathrm{kW} / \mathrm{m}^{2}\right)$
1. Nhà hàng bách hóa	
Chỉ chiếu sáng	10
Chiêu sáng và quạt	$15-20$
2. Siêu thị	$100-150$

Ở trên chỉ đưa ra suắt tải của một só tải sinh hoạt thường gặp. Ngoài người ta còn đưa ra suất tải cho các cơ quan văn hóa, giáo dục v.v.

Ví dụ 3 : Tính cơng suất tính toán cho một căn họ có sớ liệu sau:
Thiết bị điện dùng trong mợt họ nhut sau :

Tenn thiết bị	S 6 lượng	Cong suất điẹn (W)	Cong suât đạt (W)
Đèn sợi đót	2	40	80
Đèn ơng huỳnh quang + chân lưu	8	45	360
Quat tràn	2	80	160
Quạt bàn	3	65	195
Tủ lạnh	1	120	120
Ti vi	1	100	100
Bàn là	1	1000	1000
Nồ cơm điện	1	630	630
Bơm nước	1	250	250

Lài giải :

Công suất đặt của căn họ

$$
P_{\mathrm{d}}=80+360+160+195+120+100+1000+630+250=2895 \mathrm{~W}
$$

Láy hệ số đông thời $\mathrm{k}_{\mathrm{dl}}=0,8$
Công suất tính toán cho căn hộ tính theo cơng suấ đặt

$$
P_{t \mathrm{tch}}=k_{\mathrm{d} i} P_{\mathrm{d}}=0,8.2895=2310 \mathrm{~W}=2,316 \mathrm{~kW}
$$

Ví dụ 4 : Mọt nhà tập thể gồn 56 hộ, trung bình mōi hộ tiêu thụ diện như ở ví dụ 3. Tính cong suắt tính toán của nhà tạp thê.

Lời giải :

Tinh theo suất tải cho một hộ.
Đay là căn họ có mức sớng trung bình $\mathrm{p}_{u}=2 \mathrm{~kW} /$ họ .
Công suất tính toán cho nhà tập thé.

$$
P_{n}=2 \times 56=112 \mathrm{~kW} .
$$

Tính theo cơng suât tî́nh toán của nhà tập thể theo cợng suất tính toán căn hộ.

$$
P_{u}=k_{\mathrm{dt}} P_{\text {wch }}=0,85 \cdot 2,316 \cdot 56=110,24 \mathrm{~kW}
$$

8.5. XÁC ĐỊNH DÒNG ĐIỆN TÍNH TOÁN

Sau khi tính được công suất tính toán, hệ sớ công suất tính toán, ta tính dòng điện tính toán như sau:

Khi cung cấp điện một pha (giữa dây pha và day trung tính)

$$
I_{t t}=\frac{P_{t t}}{U_{p d m} \cos \varphi_{t t}}
$$

trong đó : $\mathrm{U}_{\mathrm{pdơm}}$ là điện áp pha định mức của đường dây cung cấp điện.
Khi cung cấp điện ba pha đới xứng

$$
I_{t t}=\frac{P_{\mathrm{tt}}}{\sqrt{3 U_{d d m}} \cos \varphi_{\mathrm{tt}}}
$$

trong đó: $\mathrm{U}_{\mathrm{Jam}}$ là điện áp dây định mức.
Ví dụ mạng điện $380 \mathrm{~V} / 220 \mathrm{~V}$ thì

$$
\mathrm{U}_{\mathrm{pdm}}=220 \mathrm{~V} ; \mathrm{U}_{\mathrm{dU} \mathrm{~m}}=380 \mathrm{~V}
$$

Ví dụ 5 : Tính dòng điẹn tifinh toán chạy trên đường dây pha cung cấp điện cho căn họ trong ví dụ 3 . Biết căn hộ lấy điện ở mạng $380 \mathrm{~V} / 220 \mathrm{~V}$; hệ số công suất trung bình của căn hộ $\cos \varphi=0,9$.

Lời giải : Điện vào cãn hợ gồm mợt dây pha và dây trung tính, có $\mathrm{U}_{\text {pumm }}=220 \mathrm{~V}$.
Dòng điẹn tính toán chạy trên đường day pha vào căn họ

$$
I_{u}=\frac{P_{\mathrm{u}}}{\mathrm{U}_{\mathrm{plm}} \cos \varphi}=\frac{2316}{220.0,9}=11,7 \mathrm{~A}
$$

Ví dụ 6 : Tính đòng diện tính toân chạy trên đường dây từ máy biến âp đến nhà tập thể trong ví dụ 4. Cho biết người ta đưa điện ba pha đến nhà tập thê, sau đó phan pha cho các tảng.

Lài giải :

Dòng điện tính toán chạy trên đường dây

$$
\mathrm{I}_{\mathbf{t t}}=\frac{\mathrm{P}_{\mathrm{tt}}}{\sqrt{3} \mathrm{U}_{\mathrm{dd} \mathbf{m}} \cos \varphi}=\frac{110,24 \cdot 10^{3}}{\sqrt{3} \cdot 380.0,9}=186,1 \mathrm{~A}
$$

Việc tính toán dòng điẹn rất quan trọng, vì từ trị só này ta chọn được tiết diện dây dânn, chọn cấu chì, aptomát, tính tổn thất điện áp trên đường day...

8.6. TỔN THẤT DIẸN ÁP TRÊN ĐƯỜNG DÂY

Tởn thất điẹn áp trên đường dây là hiệu só giữa trị sớ hiệu dụng điện áp đầu đường dây và điện áp cuối đường dây

$$
\Delta \mathrm{U}=\mathrm{U}_{1}-\mathrm{U}_{2}
$$

Khi đường đây có điện trở R và điện kháng $\mathrm{X}=\omega \mathrm{L}$, cung cấp điện cho tải có hệ sớ công suất $\cos \varphi$, dòng điện chạy trên đường dây I thì tổn thất điện áp được tính là

$$
\begin{equation*}
\Delta \mathrm{U}=\mathrm{U}_{1}-\mathrm{U}_{2}=\mathrm{RI} \cos \varphi+\mathrm{XI} \sin \varphi \tag{8-15}
\end{equation*}
$$

Khi hệ só công suất $\cos \varphi$ cao ví dụ $\cos \varphi \approx 0,85$ ta có thể tính gần đúng

$$
\begin{equation*}
\Delta \mathrm{U} \approx \mathrm{RI} \tag{8-16}
\end{equation*}
$$

Công thức ($8-15$) và công thức ($8-16$) dùng để tính tổn thất điện áp theo dòng điện chạy trên đường dây I .

Vận dụng các công thức trên cho các phương án cung cấp điện.

1. Cung cấp điện một pha

Lúc này dòng điện trong day trung tính bằng dòng điện trong dây pha, có tổn thất điện áp trên dây trung tính, do đó

$$
\begin{equation*}
\Delta U=2(R I \cos \varphi+X I \sin \varphi) \tag{8-17}
\end{equation*}
$$

Đới với tải \sinh hoạt $\cos \varphi$ - cao, có thể tính gần đúng

$$
\begin{equation*}
\Delta \mathrm{U} \approx 2 \mathrm{RI} \tag{8-18}
\end{equation*}
$$

2. Cung cấp điện ba pha

Khi tải ba pha đơi xứng, dòng điện trong dây trung tính bằng không, do đó tổn thất điện áp pha là

$$
\begin{equation*}
\Delta \mathrm{U}_{\mathrm{p}}=R \mathrm{I} \cos \varphi+\mathrm{XI} \sin \varphi \tag{8-19}
\end{equation*}
$$

Gần đúng, khi $\cos \varphi$ cao

$$
\begin{equation*}
\Delta \mathrm{U}_{\mathrm{p}} \approx \mathrm{RI} \tag{8-20}
\end{equation*}
$$

Tổn thất điẹn áp dây:

$$
\begin{equation*}
\Delta \mathrm{U}_{\mathrm{d}}=\sqrt{3} \Delta \mathrm{U}_{\mathrm{p}}=\sqrt{3}(\mathrm{RI} \cos \varphi+\mathrm{XI} \sin \varphi) \tag{8-21}
\end{equation*}
$$

Khi $\cos \varphi$ cao, giá trị gần đúng

$$
\begin{equation*}
\Delta \mathrm{U}_{4} \approx \sqrt{3} \mathrm{RI} \tag{8-22}
\end{equation*}
$$

Ta cũng có thể tính tổn thất điện áp theo cơng suất truyền tải trên đường dây.

$$
\text { Thay } I=\frac{P}{\sqrt{3} U_{d} \cos \varphi}=\frac{Q}{\sqrt{3} U_{d} \sin \varphi} \text { vào (8-21) ta có : }
$$

$$
\begin{equation*}
\Delta U_{d}=\frac{P R+Q X}{U_{d}} \tag{8-23}
\end{equation*}
$$

trong đó P, Q là công suất tác dụng và phản kháng của tải ba pha.
Khi $\cos \varphi$ cao ta có

$$
\begin{equation*}
\Delta U_{d} \approx \frac{P R}{U_{d}} \tag{8-24}
\end{equation*}
$$

Mỡi đường day có điện áp định mức. Điện áp định mức của đường dây thường lây trị só trung bình cộng điện áp đầu đường dây và cuới đường dây.

$$
\mathrm{U}_{\mathrm{dm}}=\frac{\mathrm{U}_{1}+\mathrm{U}_{2}}{2}
$$

Tổn thất điện áp thường biểu thị bằng $\%$ so với điện áp định mức

$$
\begin{equation*}
\Delta \mathrm{U} \%=\frac{\Delta \mathrm{U}}{\mathrm{U}_{\mathrm{dm}}} 100 \tag{8-25}
\end{equation*}
$$

Khi làm việc, để các tải làm việc với đặc tính tớt nhất, điện áp đường dây phải bằng điện áp định mức của tải. Tuy nhiên trong thực tế người ta cho phép sai lệch như sau:

Tải chiéu sáng. $\Delta \mathrm{U}_{\mathrm{cp}} \%= \pm 3 \%$
Các tải khác $\quad \Delta \mathrm{U}_{\mathrm{cp}} \%= \pm 5 \%$
(như động cơ điện)

8.7. LỰA CHƠN CÁC THIẾT BỊ ĐÓNG CÁT VÀ BẢO VẸ MẠNG ĐIỆN THẤP ÁP

1. Chọn cầu dao

Chọn cầu dao phải đảm bảo điều kiện :

$$
\begin{aligned}
& U_{\mathrm{dmadd}} \geq U_{\mathrm{dmmad}} \\
& \mathrm{I}_{\mathrm{dmad}} \geq \mathrm{I}_{\mathrm{u}}
\end{aligned}
$$

trong đó : $\quad U_{\text {dmucd }}$ là điện áp định mức của cầu dao
$\mathrm{U}_{\text {umma }}$ là điện áp định mức của mạng điện
I_{ut} là dòng điện tính toán (dòng điện làm việc lâu dài qua cầu dao)

$$
\mathrm{I}_{\text {dmcd }} \text { là dòng điện định mức cầu dao }
$$

2. Chọn cầu chì

a) Chọn câu chì cho mạng aiẹn chiếu sáng, mạng sinh hoạt :

$$
\mathrm{I}_{\mathrm{dc}} \geq \mathrm{I}_{\mathrm{u}}
$$

Trong đó: $\quad \mathrm{I}_{\mathrm{dc}}$ là dòng điện định mức của dây chảy cầu chì (dòng điện lớn nhất mà dây chảy cầu chì chịu được lâu dài mà không bị đứt)
b) Chọn cầu chi nhánh cáp diẹn cho mộ aộng co phải thoả mãn 2 điêu kiẹn :

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{dc}} \geq \mathrm{I}_{\mathrm{dmD}} \\
& \mathrm{I}_{\mathrm{dc}} \geq \frac{\mathrm{I}_{\mathrm{mm} \mathrm{D}}}{2,5}
\end{aligned}
$$

Trong đó : $\quad I_{\text {dmD }}$ là dòng điện định mức của động cơ
$\mathrm{I}_{\mathrm{mmm}}$ là dòng điện mở máy của đợng cơ
với động cơ không đồng bộ lồng sóc $\mathrm{I}_{\mathrm{mm}}=(5 \div 7) \mathrm{I}_{\mathrm{dm}}$.
Ta sẽ chọn dây chảy câu chì theo trị só lớn nhất trong hai trị só ở trên.
c) Chọn cấu chi dường dây chinh cung cấp điện cho một nhơm aọng cơ theo 3 aiéu kiẹn sau :

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{dc}} \geq \mathrm{I}_{\text {tahbom }} \\
& \mathrm{I}_{\mathrm{dc}} \geq \frac{\mathrm{I}_{\mathrm{mmd}}}{2,5}
\end{aligned}
$$

trong đó: $\quad \mathrm{I}_{\text {tunhom }}$ - là dòng điẹn tính toán của đường dây chính khi đã xét đến hệ sơ đồng thời, hệ so oử dụng (hệ sớ tải).
$\mathrm{I}_{\text {numd }}$ - là dòng điện mở máy chạy trên đường dây chính khi động cơ thứ k mở máy(các động cơ và tải khác làm việc bình thường). Động cơ thứ k có hiệu ($I_{\text {mimk }}-I_{\mathrm{lvk}}$) lớn nhất trong tất cả các động coo.

$$
I_{m m d}=I_{\text {mmk }}+\left(I_{\text {unhbóm }}-I_{(\mathrm{vk}}\right)
$$

trong đó: $\quad I_{m m k}$ là dòng điện mở máy của động cơ thứ k
$\mathrm{I}_{\mathrm{lvk}}$ là dòng điện làm việc của động cơ thứ k .
Ngoài hai điểu kiện trên còn phải thoả mãn điều kiện chọn lọc : I_{dc} của cầu chì tởng phải lớn hơn ít nhắt 2 cấp so với I_{cc} của cầu chì nhánh lớn nhất.

Dưới đây đưa ra dòng điện định mức dây chảy cầu chì $\mathrm{I}_{\mathrm{dv}}(\mathrm{A})$
$600 ; 350 ; 15 ; 20 ; 25 ; 30 ; 40 ; 50 ; 60 ; 80 ; 100 ; 125 ; 150 ; 200 ; 225 ; 250 ; 500 ; 600 ; 700 ; 850 ; 1000$.
Ví dụ $7:$ Chọn cấu chì ở đường đây nhánh cung cấp điện cho 1 động cơ không đồng bọ $\mathrm{I}_{\mathrm{dm}}=11,5 \mathrm{~A}$, dòng điẹn mở máy $\mathrm{I}_{\mathrm{min}}=5,5 \mathrm{I}_{\mathrm{um}}$.

Lài giải : Hai điếu kiện chọn cảu chì :

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{dc}} \geq \mathrm{I}_{\mathrm{dm}}=11,5 \mathrm{~A} \\
& \mathrm{I}_{\mathrm{dc}} \geq \frac{\mathrm{I}_{\mathrm{mm}}}{2,5}=\frac{5,5 \cdot 11,5}{2,5}=25,3 \mathrm{~A}
\end{aligned}
$$

Dựa vào bảng dòng điện định mức dây chảy chọn : $\mathrm{I}_{\mathrm{dc}}=30 \mathrm{~A}$.
Ví dụ 8: Chọn câu chì ở đường day chính cung cấp điện cho 8 động cơ - cho biết $\mathrm{I}_{\text {unhaćm }}=51,75 \mathrm{~A}$, động cơ thứ 5 có $\mathrm{I}_{\mathrm{dm}}=11,5 \mathrm{~A} ; \mathrm{I}_{\mathrm{mm}}=5,5 \mathrm{I}_{\mathrm{um}}$ và hệ sớ tải $\mathrm{k}_{1}=0,3$ là đọng cơ có hiệu $\left(\mathrm{I}_{\mathrm{mm}}-\mathrm{I}_{\mathrm{v}}\right)$ lớn nhất. Dây chảy ở cầu chì nhánh lớn nhấ là 30 A .

Lài giải :

$$
I_{\text {unhem }}=51,75 \mathrm{~A}
$$

Động cơ so 5 : $\quad \mathrm{I}_{\mathrm{mm}}=5,5 . \mathrm{I}_{\mathrm{dm}}=5,5 \cdot 11,5=63,25 \mathrm{~A}$

$$
\mathbf{I}_{\mathrm{lv},}=\mathbf{k}_{1} \mathrm{~L}_{\mathrm{dms} 5}=0,3 \cdot 11,5=3,45 \mathrm{~A}
$$

Điều kiện chọn I_{dc} càu chì nhánh chính :

$$
\begin{gathered}
\mathrm{I}_{\mathrm{dc}} \geq \mathrm{I}_{\mathrm{umh} 6 \mathrm{~m}}=51,75 \mathrm{~A} \\
\mathrm{I}_{\mathrm{de}} \geq \frac{\mathrm{I}_{\mathrm{mmd}}}{2,5}=\frac{\mathrm{I}_{\mathrm{mms} 5}+\left(\mathrm{I}_{\mathrm{tmhh} \delta \mathrm{~m}}-\mathrm{I}_{\mathrm{lv} 5}\right)}{2,5} \geq \frac{63,25+(51,75-3,45)}{2,5}=44,62 \mathrm{~A}
\end{gathered}
$$

Chọn $\mathrm{I}_{\mathrm{dc}}=60 \mathrm{~A}$ thoả mãn cả 3 điều kiện đã nêu.

3. Chọn áptômát

Chọn theo điều kiện làm việc lâu dài

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{dmA}} \geq \mathrm{I}_{\mathrm{u}} \\
& \mathrm{U}_{\mathrm{dmA}} \geq \mathrm{U}_{\mathrm{dmma}}
\end{aligned}
$$

Trong đó: $\quad I_{14}$ là dòng điện tính toán (làm việc lâu dài)
$\mathrm{I}_{\text {dmA }}$ là dơng điện định mức của aptomát
$\mathrm{U}_{\mathrm{dmA}}$ là điện áp định mức của aptomát
$\mathrm{U}_{\mathrm{dmmd}}$ điện áp định mức. mạng điện.

8.8. LỰA CHỌN TIẾT DIỆN DÂY DẪN VÀ DÂY CÁP HẠ ÁP

1. Các điều kiện chọn tiết diện dây dần và dáy cáp

Lựa chọn tiết diện day phải thoả mãn 3 điểu kiện sau :

- Bảo đảm điều kiện phát nhiệt cho phếp, nghĩa là tiết diện day phải đủ lớn để dòng điện làm việc lâu dài đi qua không làm cho day dān phát nóng quá nhiệt độ cho phép. Vì thế với môi loại dây người ta quy định dòng điện cho phép kí hiệu là I_{cp}. Ví dụ : Cáp đồng hạ áp 2 lö̃i cách điện PVC do Lens chế tạo :

Tiết diẹn $\mathrm{S}\left(\mathrm{mm}^{2}\right)(2 \times \mathrm{S})$	Dòng điẹn cho phép $\mathrm{I}_{\mathrm{cp}}(\mathrm{A})$	
	Trong nhà	Ngoài trời
$2 \times 1,5$	37	26
$2 \times 2,5$	48	36
2×4	63	49
2×6	80	63
2×10	104	86

- Bảo đảm điều kiện tởn thắt điện áp chọ phép, nghỉa là tiết diện dây phải đủ lớn để tổn thất điện áp từ đầu đường dây đến cuới đường day nhỏ hơn tổn thất điện áp cho phép $\Delta \mathrm{U}_{\mathrm{cp}}$, để các tải ở cuới đường dây làm việc bình thường.
- Bảo đảm điếu kiện sức bền cơ học cho phép, nghĩa là tiết diện dây dẫñ phải đủ lớn đẻ̉ không bị đứt do trọng lượng bản thân dây và do lực cơ học ngoài (gió, bão...).

2. Chọn tiết diện dây theo điều kiện phát nóng

Trên cơ sở dòng diện tính toán I_{u} chạy trên đường dây, ta chọn dây có dòng điện cho phép $I_{\text {cp }}$ như sau :

$$
\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{I}_{\mathrm{cp}} \geq \mathrm{I}_{u}
$$

trong đó : $\quad k_{1}$ là hệ sớ hiệu chỉnh về nhiẹt độ môi trường xung quanh k_{2} là hệ sớ hiệu chỉnh về số dây cáp đặt trong một hầm hoặc một rãnh dưới đất.

Ví dụ : Một căn họ tièu thụ công suất điẹn tính toán $\mathrm{P}_{\mathrm{u}}=3,5 \mathrm{~kW} ; \mathrm{U}=220 \mathrm{~V}$; $\cos \varphi=0,9$.

Chọn dây dẫn cho căn hộ.

Lờ giải : $I_{u t}=\frac{P_{u t}}{U \cos \varphi}=\frac{3,5 \cdot 10^{3}}{220.0,9}=17,67 \mathrm{~A}$
Hẹ sơ hiẹuu chinh nhiẹt độ $\mathrm{k}_{1}=0,71$
Hệ sơ hiẹu chinh sớ day cáp $\mathrm{k}_{2}=1$ (chi có 1 đường day).

$$
I_{c p} \geq \frac{I_{u}}{k_{1} k_{2}}=\frac{17,67}{0,71}=24,8 \mathrm{~A}
$$

Dựa vào bảng day dẫn, ta có thé̉ chọn đay $2 \times 1,5 ; 2 \times 2,5$ song để đảm bảo độ bền cơ học, ta chọn day cáp đờng 2×4 dưa điẹn vào căn họ.

Ngoài ra vì đường dây ngắn ta khơng cẩn kiểm tra tởn thất điện áp.
Dây dã̃n và cáp hạ áp sau khi chọn theo phát nóng cần kiểm tra theo điều kiện kết hợp vơi thiết bị bảo vệ.

Nếu bảo vệ bà̀ng cấu chì

$$
\mathrm{I}_{\mathrm{cp}} \geq \frac{\mathrm{I}_{\mathrm{dc}}}{\alpha}
$$

Với mạng đợng lực $\alpha=3$
Với mạng chiéu sáng, sinh hoạt $\alpha=0,8$
Nếu bảo vệ bằng áptômát

$$
\begin{array}{r}
\mathrm{I}_{\mathrm{cp}} \geq \frac{\mathrm{I}_{\mathrm{kdnh}}}{1,5} \\
\text { hoạ̣c } \mathrm{I}_{\mathrm{cp}} \geq \frac{\mathrm{I}_{\mathrm{kddt}}}{4,5}
\end{array}
$$

trong đó $\mathrm{I}_{\mathrm{kdnh}}, \mathrm{I}_{\text {kduı }}$ là dòng điện khởi động của bọ phận cắt mạch điện bằng nhiệt hoặc bầng điện từ của áptômát.

Nếu đường dây dài, cần kiểm tra tởn thất điện áp ΔU từ đấu đường đây đến cuối đường day.

$$
\Delta \mathrm{U} \leq \Delta \mathrm{U}_{\mathrm{cp}}
$$

trong đó $\Delta \mathrm{U}_{\mathrm{cp}}$ là tởn thất điện áp cho phêp. Nếu tổn thất điện áp lớn hơn tởn thất điện áp cho phép, ta phải chọn tiết diện lớn hơn để thoả mãn $\Delta \mathrm{U} \leq \Delta \mathrm{U}_{\mathrm{cp}}$.

CÂU HỎI VÀ BÀI TẬP CHƯONG 8

8.1. Các yêu cả̛u đới với mạng điện hạ áp.
8.2. Hāy nêu các phương án sơ đờ cắp điện của mạng điện hạ áp.
8.3. Cách xác định cơng suắt tính toán P_{t} cho phân xưởng, cho xí nghiệp và cho mợt khu nhà tập thệ
8.4. Biễu thức dờng điện tính toán I_{t} khi cung cắp điện một pha và khi cung cáp điện ba pha.
8.5. Biểu thức tính tơn thất điện áp $\Delta \mathrm{U}$ từ đầu đường dây đến cuối đường dây.
8.6. Trình bày phương pháp chọn tuết diện dảy dẫn và dây cáp.
8.7. Phương pháp chọn cầu dao, cå̉u chì và áptómát.
8.8. Mợt nhả làm việc của mợt công ty gởm 18 phòng làm việc sử dụng các thiết bị điện sau:

- 14 phòng nhỏ, mổ phòng có : 1 điểu họà khóng khi 2,5kW ; 8 đèn ống huỳnh quang $0,36 \mathrm{~kW}$.
- 4 phòng iớn, mỗi phòng có : 2 điểu hoà không khí 5 kW ; 16 đèn ống huỳnh quang 0,72 kW.

Điện chiếu sáng hành lang và khu vệ sinh, nhà xe 2 kW . Cho biết hệ sớ cơng suất trung bình 0,8 và hệ số đổng thời $\mathrm{k}_{\mathrm{dt}}=0,9$.

Tính công suát tính toán $P_{t t}$ và dòng điện tính toán $I_{t 1}$ của công ty.
Đáp só : $P_{t}=58,428 \mathrm{~kW} \quad I_{t t}=110,96 \mathrm{~A}$.

TÀI LIẸU THAM KHẢO

1. Đặng Văn Đào - Le Văn Doanh, Ky thuât điện, NXB Giáo dục, 2001.
2. A.Bruce Carlson - David G.Gisser, Electrical engineering, Addison-Wesley Publishing company 1999.
3. Francis MILSANT, Cours d' Electrotechnique Berti Editions, 1993.
4. Thomas L.Floyd, Principles of electric circuits, Prentice-Hall 2000.
5. B.P.Patil, Electrical machines, Vrinda publications - 2000.
6. Patrica Van Deplanque, Ky thuạt chiếu sáng, Le Văn Doanh và Đặng Văn Dào (dịch), NXB Khoa học và Ky thuật, 2001.
7. Ngo Hồng Quang - Vu Văn Tả̉m, Thiết kế cáp điện, NXB Khoa học và Ky̆ thuât, 2001.
8. Le Thành Bắc, Giáo trình thiết bị điện, NXB Khoa học và Ky̆ thuật, 2001.

Mục lục

Lời giới thiệu Trang
Mở đầu 3
Chuoong 1. Mạch điện một chiếu (7 tiêtt) 4
1.1. Những khái niệm cơ bản về mạch điện một chiều
5
5
1.2. Các đại lượng đặc trưng quá trình năng lượng trong mạch diện
7
7
1.3. Mô hình mạch điện một chiêu
1.3. Mô hình mạch điện một chiêu
8
8
1.4. Các định luạt của mạh điện
1.4. Các định luạt của mạh điện
10
10
1.5. Các biến dối tương dương
1.5. Các biến dối tương dương
12
12
1.6. Nguyền lý xếp chồng
1.6. Nguyền lý xếp chồng
16
16
1.7. Các phương pháp giải mạch diện phức tạp
1.7. Các phương pháp giải mạch diện phức tạp 18
Câl hỏi ôn tập và bài tập 24
Chuơng 2. Điện từ (6 tiết)
2.1. Những khái niệm cơ bản về từ trường
28
28
2.2. Cường đọ từ cảm - Cường đọ từ trường - Từ thông
2.2. Cường đọ từ cảm - Cường đọ từ trường - Từ thông
30
30
2.3. Vật liệu sắt tù̀
2.3. Vật liệu sắt tù̀
33
33
2.4. Định luạt càm ứng điện từ
2.4. Định luạt càm ứng điện từ
34
34
2.5. Định luật lực diẹ̣n tù
2.5. Định luật lực diẹ̣n tù
37
37
2.6. Đinnh luạt mạch từ - Tïnh toán mach từ
2.6. Đinnh luạt mạch từ - Tïnh toán mach từ 38
Câu hỏi ôn tập và bài tập 44
Chuoong 3. Dòng diện xoay chiều hình \sin (12 tiết)
3.1. Cách tạo ra sức diẹn động xoay chiều hình sin
46
46
3.2. Các định nghĩa vé dòng diện xoay chiều hình sin
3.2. Các định nghĩa vé dòng diện xoay chiều hình sin
47
47
3.3. Trị sớ hiệu dụng của dòng điẹn
3.3. Trị sớ hiệu dụng của dòng điẹn
50
50
3.4. Biểu diền dòng điện xoay chiểu hình sin bà̀ng vectơ
51
51
3.5. Quan hệ giữa dòng điện, điẹn áp cưa một nhânh
3.5. Quan hệ giữa dòng điện, điẹn áp cưa một nhânh
53
53
3.6. Công suất của dòng điện hình sin
3.6. Công suất của dòng điện hình sin
62
62
3.7. Nâng cao hê sớ công suát $\cos \varphi$
65
65
3.8. Biếu diền dòng điện hình sin bằng số phức
3.8. Biếu diền dòng điện hình sin bằng số phức
67
67
3.9. Phương pháp giải mạch điện xoay chiểu hình sin
3.9. Phương pháp giải mạch điện xoay chiểu hình sin
71
71 75
Cau hỏi ôn tập và bài tập
Cau hỏi ôn tập và bài tập
Chutong 4. Mạch điện ba pha (8 tiết)
4.1. Khái niệm chung
4.2. Cách nối hình sao (Y) 78
4.3. Cách nôi hình tam giác (Δ) 81
4.4. Cỏng suât của mạch điện ba pha 84
4.5. Cách giaii mạch diện ba pha dói xưng 87 87 90
4.6. Giải mạch ba pha không dơii xứng có dây trung tính
4.6. Giải mạch ba pha không dơii xứng có dây trung tính
4.7. Đo công suát mạch điẹn ba pha 94 94
4.8. Cách nơi nguồn và tái trong mạch ba pha 97 97
Cau hỏi ôn tập và bài tập 101 99 99
Chutơng 5. Chinh lưu và ôn áp (6 tiết)
5.1. Đại cương về các bộ chinh lưu
5.2. Chỉnh lưu một nửa cha kỳ 103 104
5.3. Chỉnh iutu hai nửa chu kỳ
107
107
5.4. Chinh Ituru ba pha hình tia
5.4. Chinh Ituru ba pha hình tia
109
109
5.5. Chỉnh lưu cầu ba pha
5.5. Chỉnh lưu cầu ba pha
111
111
5.6. Các bộ ốn định điện áp
112
112
Cau hòi ôn tạp
Cau hòi ôn tạp 113
Chutong 6. Các thiét bị đóng cắt và bảo vệ mạch điẹn (6 tiết)
6.1. Role
6.2. Câu dao
6.2. Câu dao 114 114
6.3. Nút án
6.3. Nút án 116 116
6.4. Cong tấc tơ diện từ 117 117
6.5. Khởi động từ 117 117
6.6. Câu chì 120 120
6.7. Áptômát 121 121
Cau hỏi on tập 122 122 1227.1. Các đại lượng cơ bàn và đơn vị đo
Chương 7. Chiêu sáng (7 tiết)
123
7.2. Hệ sơ phản xạ ρ, Hệ sớ thấu xạ τ, Hẹ sớ hấp thụ α
127
127
7.3. Đèn sợ đốt
129
129
7.4. Đèn huỳnh quang
133
133
7.5. Đèn phơng điện
138
138
7.6. Bộ đèn
7.6. Bộ đèn
140
140
7.7. Thiết kế chiếu sáng trong nhà bằng phương pháp hệ sơ sử dụng 143
7.8. Phương pháp công suất dơn vị $p\left(W / \mathrm{m}^{2}\right)$
149
149
Cau hỏi ôn tạ̣p và bài tập 149
Chương 8. Tính toán mạng điện (8 tiêt)
8.1. Khái niẹm chung về mạng diện
151
151
8.2. So đờ mạng cáp điện cho xí nghiệp và cơ quan 154
8.3. Sơ đơ mạng diẹn hậáp
158
158
8.4. Xác địinh cong suất tính toán
160
160
8.5. Xác định dòng điện tính tớn
165
165
8.6. Tởn thất diện áp trên đường day
166
166
8.7. Lựa chọn các thiêt bị đóng cắt và bảo vẹ mạng điện hạ ạp 168
8.8. Lưa chọn tiết diẹn day dẫn và day cáp hạ áp
171
171
Cáu hỏi và bài tạp
172
172
Tài liệu tham khảo
Tài liệu tham khảo 173
Mục lục 174

Chịu trách nhiệm xuất bản :
Chủ tịch HĐQT kiêm Tởng Giám đóc NGÔ TRẦN ÁI Phó Tởng Giám đớc kiêm Tổng biên tập VỮ DƯONG THỤY

> Biên tập lần đầu :
> TRẦN TRỌNG TIẾN
> NGUYỄN HỒNG ÁNH

Biên tâp tái bản: NGUYẾN HỒNG ÁNH

Trinh bày bia :
QUANG TUẤN
Sưa bài :
THU HUONG
Chébán :
HỒNG THÅM

GIÁO TRİNH KỸ THUẬT glệN
 Mã số: 7K552T4-KHO

In 1.000 cuốn, khở $16 \times 24 \mathrm{~cm}$ tại Cồng ty Cở phẩn IN KHÁNH H(̧̂i, (27Hoàng Diệu, P12, Q4 - Tp. Hồ Chí Minh). Số ĐKKHXB: 1750/CXB - 156. Giấy TNKHXB: 2713/GPTN ngày 11.10.2004. In xong và nộp luú chîẻu tháng 11/2004.

NGOO SAO VÀNG
CHẤT LUONG
QUỐC TẼ́

TIM ĐOCC GIÁO TRINH DÚNG CHO CÁC TRUỚNG ĐÁO TAO HĖ TRUNG HOC CHUYĖN NGHIẸ́P CÚA NHA XUĂT BẢN GIÁO DỤC

1. An toàn điẹn
2. Kȳ thuật điẹ̀n
3. Máy điẹ̀n
4. Kȳ thuật lấp dặt điện
5. Điện dàn dưng và cóng nghiệp
6. Cung cáp diẹn
7. Đo lương các đại lượng điện và không diện
8. Ký thuật điều khiển động co điện
9. Điện tù cong suất
10. Linh kiẹ̃n điện tủ và úng dụng
11. Điẹn tủ dản dụng
12. Kỳ thuật sö
13. Kī thuạ̀t mạch điện tủ
14. Co ky thuàt
15. An toàn lao dọ́ng
16. Vē kī thuạt
17. Vật liệu và cōng nghẹ̀ co khi
18. Dung sai lắp ghep và ky thuật to luơng
19. Kỹ thuật sủa chūa ôtô, mảy nổ
20. Cong nghẹ hàn (i thuyét va ung dung)
21. C σ sơ kȳ thuật cằt gọt kim loại

Nguyen Binh Thäng
Eạng Van Đào
Nguyễn Hóng Thanh
Phan छäng Khai
Vū Vàn Täm
Ngo Hóng Quang
Nguyến Vän Hoa
Vu Quang Hoi
Tràs Trong Minh
Nguyēn Viét Nguyen
Nguyèn Thanh Tra, Thai Vinh Hien
Nguyèn Viét Nguyen
Dang Vàn Chuyet
Dó Sanh
Nguyen The Dat
Trân Hüu Qué
Hoang Tung
Ninh Euc Ton Nguyèn Thi Xuan Bay
Nguyen Tát Jien, Đó Xuàn Kinfs
Nguyén Thuc Ha
Nguyễ Tien Luơng

81 Tran Hing I fo, 57 Giang vó 2.3 Trang Tien, 25 Han Thuyen,
210, 2.37 Tay Son - TP. Ha Voi: 15 Vguyen Ch Thanh - TP. Da Vang;
23J Ngmen Van Cu- Guch 5-TP. Ho Chi Minh.
14.500 d

